Square Roots and Surface Area

What You'll Learn

- Find square roots of fractions and decimals that are perfect squares.
- Approximate the square roots of fractions and decimals that are not perfect squares.
- Find the surface areas of composite objects.

Why It's Important

Square roots are used by

- police officers, to estimate the speed of a vehicle when it crashed
- vets, to calculate drug dosages

Surface area is used by

- painters, to find the number of cans of paint needed to paint a room
- farmers, to find the amount of fertilizer needed for a field

Key Words

square
square root
perfect square
non-perfect square
terminating decimal
repeating decimal
non-terminating, non-repeating decimal
surface area
composite object

1.1 Skill Builder

Side Lengths and Areas of Squares

The side length and area of a square are related.

- The area is the square of the side length.

$$
\begin{aligned}
\text { Area } & =(\text { Length })^{2} \\
& =5^{2} \\
& =5 \times 5 \\
& =25
\end{aligned}
$$

The area is 25 square units.

- The side length is the square root of the area.
Area $=25$ square units Length $=\sqrt{\text { Area }}$

$=\sqrt{25}$
$=\sqrt{5 \times 5}$
$=5$
The side length is 5 units.

Check

1. Which square and square root are modelled by each diagram?

Diagram					Square Modelled	Square Root Modelled
a)					$\begin{aligned} (\text { Length })^{2} & =\text { Area } \\ 7^{2} & = \end{aligned}$ The area is 49 square units.	$\begin{aligned} \sqrt{\text { Area }} & =\text { Length } \\ \sqrt{49} & = \end{aligned}$ The side length is 7 units.
b)					\qquad $=$ \qquad The area is \qquad square units.	$\sqrt{\square}=$ \qquad The side length is \qquad units.
c)					\qquad $=$ \qquad The area is \qquad square units.	$\sqrt{\square}=$ \qquad The side length is \qquad units.
d)					\qquad $=$ \qquad The area is \qquad square units.	\qquad \qquad The side length is \qquad units.

Whole Number Squares and Square Roots

- The square of a number is the number multiplied by itself.
- A square root of a number is one of 2 equal factors of the number.
- Squaring and taking a square root are inverse operations.

$$
\begin{aligned}
5^{2} & =5 \times 5 \\
& =25 \\
\sqrt{25} & =\sqrt{5 \times 5} \\
& =5 \\
5^{2} & =25 \text { and } \sqrt{25}=5
\end{aligned}
$$

Check

1. Complete each sentence.
a) $4^{2}=16$, so $\sqrt{16}=$ \qquad b) $12^{2}=$ \qquad , so $\sqrt{ }$ \qquad
\qquad
c) $\sqrt{25}=$ \qquad since \qquad $=25$
d) $\sqrt{100}=$ \qquad since \qquad $=$

Perfect Squares

A number is a perfect square if it is the product of 2 equal factors.
25 is a perfect square because $25=5 \times 5$.
24 is a non-perfect square. It is not the product of 2 equal factors.

Check

1. Complete each sentence.

First 12 Whole-Number Perfect Squares			
Perfect Square	Square Root	Perfect Square	Square Root
$1^{2}=1 \times 1=1$	$\sqrt{1}=1$	$7^{2}=\ldots \times \ldots$	$\sqrt{\square}=$
$2^{2}=2 \times 2=4$	$\sqrt{4}=2$	$8^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$
$3^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$9^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$
$4^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$10^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$
$5^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$11^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$
$6^{2}=\ldots \times \ldots=$	$\sqrt{\square}=$	$12^{2}=\ldots \times \ldots$	$\sqrt{\square}=$

1.1 Square Roots of Perfect Squares

FOCUS Find the square roots of decimals and fractions that are perfect squares.

The square of a fraction or decimal is the number multiplied by itself.
$\left(\frac{2}{3}\right)^{2}=\frac{2}{3} \times \frac{2}{3}$
$(1.5)^{2}=1.5 \times 1.5$
$=\frac{2 \times 2}{3 \times 3}$
$=2.25$
$=\frac{4}{9}$
$\frac{4}{9}$ and 2.25 are perfect squares because they are the product of 2 equal factors.
$\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}$, so
$\frac{2}{3}$ is a square root of $\frac{4}{9}$.
We write: $\sqrt{\frac{4}{9}}=\frac{2}{3}$
$2.25=1.5 \times 1.5$, so
1.5 is a square root of 2.25 .

We write: $\sqrt{2.25}=1.5$

Each equal factor is a square root of the perfect square.

Example 1 Finding a Perfect Square Given Its Square Root

Calculate the number whose square root is:
a) $\frac{5}{8}$
b) 1.2

Solution

A square root of a number is one of two equal factors of the number.
a) $\frac{5}{8}$
$\frac{5}{8} \times \frac{5}{8}=\frac{5 \times 5}{8 \times 8}$
$=\frac{25}{64}$
b) 1.2
Use a calculator.
$1.2 \times 1.2=1.44$
So, 1.2 is a square root of 1.44 .

So, $\frac{5}{8}$ is a square root of $\frac{25}{64}$.

Check

1. Calculate the perfect square with the given square root.
a) $\frac{3}{8}$
b) $\frac{3}{2}$
$\frac{3}{8} \times \frac{3}{8}=\frac{\times}{\times}$
$=$
$\frac{3}{8}$ is a square root of \qquad .
${ }^{\times}=$ \qquad
$\frac{3}{2}$ is a square root of \qquad .
c) 0.5
$0.5 \times 0.5=$ \qquad 0.5 is a square root of \qquad .

d) 2.5

$2.5 \times 2.5=$ \qquad 2.5 is a square root of \qquad .

Example 2 Identifying Fractions that Are Perfect Squares

Is each fraction a perfect square? If so, find its square root.
a) $\frac{16}{25}$
b) $\frac{9}{20}$

Solution

Check if the numerator and denominator are perfect squares.
a) $\frac{16}{25}$
b) $\frac{9}{20}$
$16=4 \times 4$, so 16 is a perfect square.
$9=3 \times 3$, so 9 is a perfect square.
$25=5 \times 5$, so 25 is a perfect square.
20 is not a perfect square.
So, $\frac{16}{25}$ is a perfect square.
So, $\frac{9}{20}$ is not a perfect square.

Check

1. Determine whether the fraction is or is not a perfect square. How do you know?
a) $\frac{9}{49}$

9 \qquad a perfect square because \qquad .

49 \qquad a perfect square because \qquad _.

So, $\frac{9}{49}$ \qquad a perfect square.
b) $\frac{25}{13}$

25 \qquad a perfect square because \qquad
13 \qquad a perfect square because \qquad _.

So, $\frac{25}{13}$ \qquad a perfect square.
c) $\frac{64}{81}$ 64 \qquad a perfect square because \qquad -

81 \qquad a perfect square because \qquad .

So, $\frac{64}{81}$ \qquad a perfect square.
2. Find the value of each square root.
a) $\sqrt{\frac{9}{4}}=\sqrt{ }$

\qquad b) $\sqrt{\frac{16}{81}}=\sqrt{\frac{\times}{\times-}}=$

A terminating decimal ends after a certain number of decimal places.
A repeating decimal has a repeating pattern of digits in the decimal expansion.
The bar shows the digits that repeat.

Terminating	Repeating	Non-terminating and non-repeating
$0.5 \quad 0.28$	$0.333333 \ldots=0 . \overline{3}$ $0.191919 \ldots=0 . \overline{19}$	$1.41421356 \ldots 7.071067812 \ldots$

You can use a calculator to find out if a decimal is a perfect square.
The square root of a perfect square decimal is either a terminating decimal or a repeating decimal.

Example 3 Identifying Decimals that Are Perfect Squares

Is each decimal a perfect square? How do you know?
a) 1.69
b) 3.5

Solution

Use a calculator to find the square root of each number.
a) $\sqrt{1.69}=1.3$

The square root is the terminating decimal 1.3.
So, 1.69 is a perfect square.
b) $\sqrt{3.5} \doteq 1.870828693$

The square root appears to be a decimal

The symbol \doteq means "approximately equal to". that neither repeats nor terminates.
So, 3.5 is not a perfect square.

Check

1. Complete the table to find whether each decimal is a perfect square.

The first one is done for you.

Decimal	Value of square root	Type of decimal	Is decimal a perfect square?	
a)	70.5	$8.396427811 \ldots$	Non-repeating Non-terminating	No
b)	5.76	-		-
c)	0.25	-		-
d)	2.5			

Practice

1. Calculate the number whose square root is:
a) $\frac{1}{4}$
b) $\frac{2}{7}$
$\frac{1}{4} \times \frac{1}{4}=\frac{\times}{\times \ldots}$
\qquad
$=\square$
$\frac{1}{4}$ is a square root of \qquad .
$\frac{2}{7}$ is a square root of \qquad .

c) 0.6

d) 1.1
\qquad \times \qquad $=$ \qquad
\qquad \times \qquad = \qquad 0.6 is a square root of \qquad .
1.1 is a square root of \qquad .
2. Identify the fractions that are perfect squares. The first one has been done for you.

	Fraction	Is numerator a perfect square?	Is denominator a perfect square?	Is fraction a perfect square?
a)	$\frac{81}{125}$	Yes; $9 \times 9=81$	No	No
	b)	$\frac{25}{49}$		
c)	$\frac{36}{121}$			-
d)	$\frac{17}{25}$			
e)	$\frac{9}{100}$			

3. Find each square root.
a) $\sqrt{\frac{49}{100}}=\sqrt{\frac{\times}{\square}}$
$=$ \qquad
b) $\sqrt{\frac{25}{144}}=\sqrt{\frac{\times}{\square}}$
$=$ \qquad
c) $\sqrt{\frac{1}{16}}=\sqrt{\frac{\times}{\times}}$
$=$ \qquad
d) $\sqrt{\frac{9}{400}}=\sqrt{\frac{\times}{{ }^{\times}}}$
$=$ \qquad
4. Use a calculator. Find each square root.
a) $\sqrt{8.41}=$ \qquad
b) $\sqrt{0.0676}=$ \qquad
c) $\sqrt{51.125}=$ \qquad
d) $\sqrt{6.25}=$ \qquad
5. Which decimals are perfect squares?
a) 1.44
$\sqrt{1.44}=$ \qquad

The square root is a decimal that \qquad .
So, 1.44 \qquad a perfect square.
b) $30.25 \quad \sqrt{30.25}=$ \qquad
The square root is a decimal that \qquad .
So, 30.25 \qquad a perfect square.
c) 8.5
$\sqrt{8.5} \doteq$ \qquad
The square root is a decimal that \qquad .
So, 8.5 \qquad a perfect square.
d) $0.0256 \quad \sqrt{0.0256}=$ \qquad
The square root is a decimal that \qquad .
So, 0.0256 _a perfect square.
6. Find the area of each square.
a)

Area $=$ \qquad
b)

Area $=$ \qquad
$=$ \qquad
Area $=(\text { Length })^{2}$
The area is \qquad
\qquad
c)

\qquad
$=$ \times \qquad
$=$ \qquad
d)

Area $=$ \qquad
$=$ \qquad \times \qquad
$=$ \qquad
7. Find the side length of each square.
a) Area $=\frac{9}{100}$ square units
Side Length $=$ \square
$=\sqrt{ }$
$=$ \qquad
Length $=\sqrt{\text { Area }}$

1 unit

The side length is \qquad units.
b) Area $=\frac{25}{36}$ square units

Length $=\sqrt{ }$

$$
=\sqrt{ }
$$

$$
=
$$

\qquad
c) Area $=0.01$ square units Length $=$, \qquad

\qquad
d) Area =
46.24 square units

$$
\begin{aligned}
\text { Length } & =\sqrt{\square} \\
& =
\end{aligned}
$$

1.2 Skill Builder

Degree of Accuracy

We are often asked to write an answer to a given decimal place.
To do this, we can use a number line.

To write 7.3 to the nearest whole number:
Place 7.3 on a number line in tenths.

7.3 is closer to 7 than to 8 .

So, 7.3 to the nearest whole number is: 7

To write 3.67 to the nearest tenth:
Place 3.67 on a number line in hundredths.

7 is the last digit. It is in the hundredths position. So, use a number line in hundredths.
3.67 is closer to 3.7 than to 3.6 .

So, 3.67 to the nearest tenth is: 3.7

Check

1. Write each number to the nearest whole number.

Mark it on the number line.
a) 5.3 \qquad
b) 6.8 \qquad c) 7.1 \qquad d) 6.4 \qquad

2. Write each number to the nearest tenth.

Mark it on the number line.
a) 2.53 \qquad b) 2.64 \qquad c) 2.58 \qquad d) 2.66 \qquad

Squares and Square Roots on Number Lines

Most numbers are not perfect squares.
You can use number lines to estimate the square roots of these numbers.
Squares

10 is between the perfect squares 9 and 16 .
So, $\sqrt{10}$ is between $\sqrt{9}$ and $\sqrt{16}$.
$\sqrt{9}=3$ and $\sqrt{16}=4$
So, $\sqrt{10}$ is between 3 and 4 .

Check with a calculator.
$\sqrt{10} \doteq 3.2$, which is between 3 and 4 .

10 is closer to 9 than 16 , so $\sqrt{10}$ is closer to 3 than 4.

Check

1. Between which 2 consecutive whole numbers is each square root?

Explain.
a) $\sqrt{22}$

22 is between the perfect squares 16 and 25 .

Refer to the squares and square roots number lines.

So, $\sqrt{22}$ is between \qquad and $\sqrt{ }$ \qquad .
\qquad and \qquad $=$ \qquad
So, $\sqrt{22}$ is between \qquad and \qquad .
b) $\sqrt{6}$

6 is between the perfect squares \qquad and \qquad .

So, $\sqrt{6}$ is between \qquad and \qquad
$\sqrt{\square}=$ \qquad and \qquad $=$ \qquad
So, $\sqrt{6}$ is between \qquad and \qquad .

The Pythagorean Theorem

You can use the Pythagorean Theorem to find unknown lengths in right triangles.
Hypotenuse

Pythagorean Theorem

$$
h^{2}=a^{2}+b^{2}
$$

To find the length of the hypotenuse, h, in this triangle:

$$
\begin{aligned}
h^{2} & =5^{2}+12^{2} \\
h^{2} & =25+144 \\
h^{2} & =169 \\
h & =\sqrt{169} \\
h & =13
\end{aligned}
$$

The length of the hypotenuse is 13 cm .

Check

1. Use the Pythagorean Theorem to find the length of each hypotenuse, h.
a)

b)

$$
h^{2}=
$$

\qquad $+$ \qquad

$$
\begin{aligned}
h^{2} & =\square+ \\
h^{2} & =\square \\
h^{2} & =\square \\
h & =\sqrt{\square} \\
h & =
\end{aligned}
$$

\qquad
$h^{2}=$ \qquad
\qquad
$h^{2}=$ \qquad
\qquad

$$
h=\sqrt{\square}
$$

$h=$ \qquad

The length of the hypotenuse is \qquad cm . The length of the hypotenuse is \qquad cm .

1.2 Square Roots of Non-Perfect Squares

FOCUS Approximate the square roots of decimals and fractions that are not perfect squares.

The top number line shows all the perfect squares from 1 to 100.

The bottom number line shows the square root of each number in the top line. You can use these lines to estimate the square roots of fractions and decimals that are not perfect squares.

Example 1 Estimating a Square Root of a Decimal

Estimate: $\sqrt{68.5}$

Solution

68.5 is between the perfect squares 64 and 81.

So, $\sqrt{68.5}$ is between $\sqrt{64}$ and $\sqrt{81}$.
That is, $\sqrt{68.5}$ is between 8 and 9 .
Since 68.5 is closer to 64 than $81, \sqrt{68.5}$ is closer to 8 than 9 .
So, $\sqrt{68.5}$ is between 8 and 9 , and closer to 8 .

Check

1. Estimate each square root.

Explain your estimate.
a) $\sqrt{13.5}$
13.5 is between the perfect squares \qquad and \qquad . So, $\sqrt{13.5}$ is between \qquad and \qquad .
That is, $\sqrt{13.5}$ is between \qquad and \qquad
Since 13.5 is closer to \qquad than \qquad $\sqrt{13.5}$ is closer to \qquad than \qquad .
So, $\sqrt{13.5}$ is between \qquad and \qquad and closer to \qquad .
b) $\sqrt{51.5}$
51.5 is between the perfect squares \qquad and \qquad .
So, $\sqrt{51.5}$ is between \qquad and \qquad -.
That is, $\sqrt{51.5}$ is between \qquad and \qquad
Since 51.5 is closer to \qquad than \qquad $\sqrt{51.5}$ is closer to \qquad than \qquad .
So, $\sqrt{51.5}$ is between \qquad and \qquad , and closer to \qquad

Example 2 Estimating a Square Root of a Fraction

Estimate: $\sqrt{\frac{3}{10}}$

Solution

Find the closest perfect square to the numerator and denominator.
In the fraction $\frac{3}{10}$:
3 is close to the perfect square 4.
10 is close to the perfect square 9 .
So, $\sqrt{\frac{3}{10}} \doteq \sqrt{\frac{4}{9}}$ and $\sqrt{\frac{4}{9}}=\frac{2}{3}$
So, $\sqrt{\frac{3}{10}} \doteq \frac{2}{3}$

Check

1. Estimate each square root.
a) $\sqrt{\frac{23}{80}}$
b) $\sqrt{\frac{8}{17}}$

23 is close to the perfect square \qquad .

8 is close to the perfect square \qquad .
80 is close to the perfect square \qquad .

17 is close to the perfect square \qquad .
So, $\sqrt{\frac{23}{80}} \doteq \sqrt{\square}$ So, $\sqrt{\frac{8}{17}} \doteq \sqrt{\square}$

So, $\sqrt{\frac{23}{80}} \doteq$ \qquad

$$
\sqrt{\square}=-
$$

So, $\sqrt{\frac{8}{17}} \doteq$ \qquad

Example 3 Finding a Number with a Square Root between Two Given Numbers

Identify a decimal that has a square root between 5 and 6 .

Solution

$5^{2}=25$, so 5 is a square root of 25 .
$6^{2}=36$, so 6 is a square root of 36 .
So, any decimal between 25 and 36 has a square root between 5 and 6 .
Choose 32.5.

Check the answer by using a calculator.
$\sqrt{32.5} \doteq 5.7$, which is between 5 and 6 .
So, the decimal 32.5 is one correct answer.
There are many more correct answers.

Check

1. a) Identify a decimal that has a square root between 7 and 8 .

Check the answer.
$7^{2}=$ \qquad and $8^{2}=$ \qquad
So, any decimal between \qquad and \qquad has a square root between 7 and 8 .
Choose \qquad .
Check the answer on a calculator.
$\sqrt{\square}$ \doteq \qquad
The decimal \qquad is one correct answer.
b) Identify a decimal that has a square root between 11 and 12 .
\qquad $=$ \qquad and \qquad $=$
So, any decimal between \qquad and \qquad has a square root between 11 and 12 . Choose \qquad .

\qquad
So, \qquad is one correct answer.

Practice

1. For each number, name the 2 closest perfect squares and their square roots.

	Number	Two closest perfect squares	Their square roots
a)	44.4	and	and
b)	10.8	and	_ and
c)	125.9	_ and ___	__ and ___
d)	87.5	_ and	\ldots __ and

2. For each fraction, name the closest perfect square and its square root for the numerator and for the denominator.

	Fraction	Closest perfect squares	Their square roots
a)	$\frac{5}{11}$	Numerator: ___ denominator: ___	\ldots ___ and ___
b)	$\frac{17}{45}$	Numerator: ___ ; denominator: ___	__ and ___
c)	$\frac{3}{24}$	Numerator: ___ ; denominator: ___	\ldots __ and ___
d)	$\frac{11}{62}$	Numerator: ___ ; denominator: ___	\qquad and \qquad

3. Estimate each square root.

Explain.
a) $\sqrt{1.6}$
1.6 is between \qquad and ___.
\qquad .
So, $\sqrt{1.6}$ is between \square and \qquad
That is, $\sqrt{1.6}$ is between \qquad and \qquad .
Since 1.6 is closer to \qquad than \qquad ,$\sqrt{1.6}$ is closer to \qquad than \qquad .
So, $\sqrt{1.6}$ is between \qquad and \qquad and closer to \qquad .
b) $\sqrt{44.5}$
44.5 is between \qquad and \qquad .
So, $\sqrt{44.5}$ is between $\sqrt{\square}$ and $\sqrt{\square}$.
That is, $\sqrt{44.5}$ is between \qquad and \qquad
Since 44.5 is closer to \qquad than \qquad $\sqrt{44.5}$ is closer to \qquad than \qquad .
So, $\sqrt{44.5}$ is between \qquad and \qquad and closer to \qquad -
c) $\sqrt{75.8}$
75.8 is between \qquad and \qquad .

So, $\sqrt{75.8}$ is between $\sqrt{\square}$ and $\sqrt{\square}$.
That is, $\sqrt{75.8}$ is between \qquad and \qquad -
Since 75.8 is closer to \qquad than \qquad ,$\sqrt{75.8}$ is closer to \qquad than \qquad .
So, $\sqrt{75.8}$ is between \qquad and \qquad and closer to \qquad .
4. Estimate each square root. Explain.
a) $\sqrt{\frac{7}{15}}$
7 is close to \qquad ; 15 is close to \qquad .
b) $\sqrt{\frac{2}{7}}$
2 is close to \qquad ; 7 is close to \qquad -
So, $\sqrt{\frac{7}{15}} \doteq \sqrt{\square}$ \doteq
c) $\sqrt{\frac{35}{37}}$
d) $\sqrt{\frac{99}{122}}$
35 is close to \qquad ; 37 is close to \qquad .
So, $\sqrt{\frac{2}{7}} \doteq \sqrt{\square}$
\doteq
\qquad
So, $\sqrt{\frac{35}{37}} \doteq \sqrt{\square}$

$$
\doteq
$$

99 is close to \qquad ; 122 is close to \qquad .
So, $\sqrt{\frac{99}{122}} \doteq \sqrt{\square}$

$$
\doteq
$$

\qquad
5. Identify a decimal that has a square root between the two given numbers.

Check the answer.
a) 1 and 2
$1^{2}=$ \qquad and $2^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 1 and 2 .
Choose
Check: \qquad -
The decimal \qquad is one possible answer.
b) 8 and 9
$8^{2}=$ \qquad and $9^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 8 and 9 .
Choose \qquad
Check: _
The decimal \qquad is one possible answer.
c) 2.5 and 3.5
\qquad $=$ \qquad and \qquad $=$ \qquad
So, any number between \qquad and \qquad has a square root between 2.5 and 3.5.
Choose \qquad
Check: $\sqrt{\square} \doteq$ \qquad
The decimal \qquad is one correct answer.
d) 20 and 21
\qquad $=$ \qquad and \qquad $=$ \qquad
So, any number between \qquad and \qquad has a square root between 20 and 21 .
Choose \qquad
Check: \qquad _
The decimal \qquad is one correct answer.
6. Determine the length of the hypotenuse in each right triangle.

Write each answer to the nearest tenth.
a)

$h^{2}=5.1^{2}+6.3^{2}$
$h^{2}=$ \qquad $+$ \qquad
$h^{2}=$ \qquad
$h=$ \qquad
$h \doteq$ \qquad
So, h is about \qquad m.
b)
$h^{2}=$ \qquad $+$ \qquad
$h^{2}=$ \qquad $+$ \qquad
$h^{2}=$ \qquad

$$
h=
$$

\qquad

$$
h \doteq
$$

\qquad
So, h is about \qquad m.

Can you ...

- Identify decimals and fractions that are perfect squares?
- Find the square roots of decimals and fractions that are perfect squares?
- Approximate the square roots of decimals and fractions that are not perfect squares?
1.1 1. Calculate the number whose square root is:
a) $\frac{2}{7}$
$\frac{2}{7} \times \frac{2}{7}=$ \qquad
$\frac{2}{7}$ is a square root of
b) $\frac{8}{11}$
\qquad
\qquad .
$\frac{8}{11}$ is a square root of \qquad .
c) 0.1
\qquad \times \qquad $=$ \qquad
d) 1.4
$1.4 \times 1.4=$ \qquad
0.1 is a square root of \qquad .
1.4 is a square root of \qquad .

2. Identify the fractions that are perfect squares.

The first one has been done for you.

	Fraction	Is numerator a perfect square?	Is denominator a perfect square?	Is fraction a perfect square?
a)	$\frac{64}{75}$	Yes; $8 \times 8=64$	No	No
b)	$\frac{9}{25}$			
c)	$\frac{25}{55}$			

3. Find each square root.
a) $\sqrt{\frac{9}{49}}=\sqrt{\frac{\times}{\times}}$
$=$ \qquad
b) $\sqrt{\frac{16}{25}}=\sqrt{\frac{\times}{\times}}$
$=$
\qquad
c) $\sqrt{\frac{36}{121}}=\sqrt{\frac{\times}{\times \ldots}}$
$=$ \qquad
4. a) Put a check mark beside each decimal that is a perfect square.
i) 4.84
ii) 3.63 \qquad iii) 98.01 \qquad iv) 67.24
\qquad
b) Explain how you identified the perfect squares in part a.
\qquad
\qquad
5. a) Find the area of the shaded square.

$$
\begin{aligned}
\text { Area } & =(\text { Length })^{2} \\
& =()^{2} \\
& =\times \\
& =-\quad
\end{aligned}
$$

The area is \qquad square units.
b) Find the side length of the shaded square.

$$
\text { Length }=\sqrt{\text { Area }}
$$

$$
=\sqrt{\square}
$$

$$
=\sqrt{L^{\times}}
$$

$$
=
$$

\qquad

The side length is \qquad units.
1.2 6. Estimate each square root.

Explain.
a) $\sqrt{7.5}$
7.5 is between \qquad and \qquad .
So, $\sqrt{7.5}$ is between $\sqrt{\square}$ and $\sqrt{\square}$.
That is, $\sqrt{7.5}$ is between \qquad and \qquad
Since 7.5 is closer to \qquad than \qquad $\sqrt{7.5}$ is closer to \qquad than \qquad .
So, $\sqrt{7.5}$ is between \qquad and \qquad and closer to \qquad -
b) $\sqrt{66.6}$
66.6 is between \qquad and \qquad .
So, $\sqrt{66.6}$ is between $\sqrt{\text { ___ and }} \sqrt{ }$ \qquad
That is, $\sqrt{66.6}$ is between \qquad and \qquad .
Since 66.6 is closer to \qquad than \qquad $\sqrt{66.6}$ is closer to \qquad than \qquad .
So, $\sqrt{66.6}$ is between \qquad and \qquad and closer to \qquad .
7. Estimate each square root.
a) $\sqrt{\frac{15}{79}}$
b) $\sqrt{\frac{23}{50}}$

15 is close to \qquad ; 79 is close to \qquad .

23 is close to \qquad ; 50 is close to \qquad .
So, $\sqrt{\frac{15}{79}} \doteq \sqrt{\square}$
So, $\sqrt{\frac{23}{50}} \doteq \sqrt{\square}$

$$
\doteq
$$

$$
\doteq-
$$

8. Identify a decimal whose square root is between the given numbers.

Check your answer.
a) 2 and 3
$2^{2}=$ \qquad and $3^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 2 and 3 .
Choose \qquad .

Check: \qquad _-_
The decimal \qquad is one correct answer.
b) 6 and 7
$6^{2}=$ \qquad and $7^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 6 and 7 .
Choose \qquad -.
$\sqrt{\square}$ \qquad
The decimal \qquad is one correct answer.
9. Find the length of each hypotenuse.
a)

$h^{2}=$ \qquad $+$ \qquad
$h^{2}=$ \qquad $+$ \qquad

$$
h^{2}=
$$

\qquad

$$
h=
$$

$$
h \doteq
$$

\qquad

The length of the hypotenuse is about \qquad m.
b)

$$
h^{2}=\ldots+
$$

\qquad
$h^{2}=$ \qquad
\qquad

$$
h^{2}=
$$

\qquad

$$
h=\sqrt{\square}
$$

$$
h \doteq
$$

\qquad

The length of the hypotenuse is about \qquad m.

1.3 Skill Builder

Surface Areas of Rectangular Prisms

The surface area of a rectangular prism is the sum of the areas of its 6 rectangular faces. Look for matching faces with the same areas.

For each rectangular face, area equals its length times its width.

Matching Faces	Diagram	Corresponding Area (cm^{2})
		$2(10 \times 6)=120$
		$2(10 \times 8)=160$
		$2(8 \times 6)=96$
Total		376

The surface area is $376 \mathrm{~cm}^{2}$.

1. Determine the surface area of each rectangular prism.
a)

	Matching Faces	Diagram	Corresponding Area (cm ${ }^{2}$)
	Front Back		$2\left(__{\sim} \times \ldots\right)=$
	Top Bottom		$2(\ldots \times \ldots)=$
	Right Left		$2(\ldots \times \ldots)=$
	Total		-

The surface area is \qquad cm^{2}.
b)

The surface area is \qquad cm^{2}.

1.3 Surface Areas of Objects Made from Right Rectangular Prisms

FOCUS Find the surface areas of objects made from rectangular prisms.

Example 1 Finding the Surface Area of an Object Made from Cubes

Make this object with 1-cm cubes.
What is the surface area of the object?

Solution

Think of tracing each face, or "opening" the object.

Look for matching views.

Matching Views	Corresponding Area $\left(\mathbf{c m}^{2}\right)$
Front / Back	$2(3)=6$
Top / Bottom	$2(2)=4$
Right / Left	$2(2)=4$
Total	14

The surface area is $14 \mathrm{~cm}^{2}$

Check

1. Make this object with $1-\mathrm{cm}$ cubes, then find its surface area.

Matching Views	Diagram	Corresponding Area (cm^{2})
Front Back		$2(\ldots)=$
Top Bottom		$2(\ldots)=$
Right Left		$2(\ldots)=$
Total		-

The surface area is \qquad cm^{2}.

A composite object is made from 2 or more objects.

To find the surface area of a composite object, imagine dipping the object in paint. The surface area is the area of all the faces covered in paint.

The overlap is not painted, so it is not part of the surface area.

Example 2 Finding the Surface Area of a Composite Object

Find the surface area of this composite object.

Solution

Surface area of smaller prism

Matching Faces	Diagram	Corresponding Area $\left(\mathbf{m}^{2}\right)$
Front Back Right Left	6 m 3 m	$4(6 \times 3)=72$
Top Bottom	6 m	6 m

The surface area is $144 \mathrm{~m}^{2}$.

Surface area of larger prism

Matching Faces	Diagram	Corresponding Area $\left(\mathbf{m}^{2}\right)$
Front Back Top Bottom	12 m	$4(12 \times 6)=288$
Right Left	6 m	2 m

The surface area is $360 \mathrm{~m}^{2}$.

Area of overlap

Diagram	Corresponding Area (m
6 m	$6 \times 3=18$
$\square 3 \mathrm{~m}$	6×3

The area of overlap is $18 \mathrm{~m}^{2}$.

SA of composite object $=144+360-2(18)=468$
The surface area of the composite object is $468 \mathrm{~m}^{2}$.

Check

1. The diagram shows the surface areas of the two prisms that make up a composite object.

a) What is the area of the overlap?

The overlap is a \qquad -cm by \qquad -cm rectangle.
Area of overlap = \qquad cm \times \qquad cm

$$
=\ldots \mathrm{cm}^{2}
$$

b) What is the surface area of the composite object?

SA composite object $=$ SA smaller prism + SA larger prism -2 (Area of overlap)

$$
\begin{aligned}
& =_\mathrm{cm}^{2}+\ldots \mathrm{cm}^{2}-2\left(_\right) \mathrm{cm}^{2} \\
& =\square \mathrm{cm}^{2}
\end{aligned}
$$

2. Find the surface area of this composite object.

A cube has \qquad congruent faces.

Surface area of larger cube

Matching Faces	Diagram		Corresponding Area (cm^{2})
Front Back Top Bottom Right Left		_ cm	$6(\ldots \times$) $=$
Total			-

The surface area is \qquad cm^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
-cm	$-^{\times} \quad=-$
\square	cm

Surface area of smaller cube

Matching Faces	Diagram	Corresponding Area (cm ${ }^{2}$)
Front Back Top Bottom Right Left		$6(\ldots \times$) $=$
Total		-

The surface area is \qquad cm^{2}.

The area of overlap is \qquad cm^{2}.

SA composite object $=$ SA larger cube + \qquad $-$ \qquad

$$
\begin{aligned}
& =-\quad+\quad-2(-\quad) \\
& =\square
\end{aligned}
$$

The surface area of the composite object is \qquad cm^{2}.

Practice

1. The diagram shows the 6 views of an object made from $1-\mathrm{cm}$ cubes.

Identify pairs of matching views in the first column of the table.
Then, find the surface area of the object.

Matching Views	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Front /	
Top /	
Right /	
Total	-

The surface area is \qquad cm^{2}.
2. Each object is made with $1-\mathrm{cm}$ cubes. Find the surface area of each object.
a)

Matching Views	Diagram	Corresponding Area (cm $\left.{ }^{2}\right)$
Front Back		$2\left(_\right)=-$
Top Bottom		$2\left(_\right)=-$
Right Left		$2\left(_\right)=-$
Total		

The surface area is \qquad cm^{2}.
b)

Matching Views	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Front Back		$2\left(_\right)=-$
Top Bottom		
Right Left	-	
Total		

The surface area is \qquad cm^{2}.
3. Find the surface area of this composite object.

Surface area of larger prism

Matching Faces	Diagram	Corresponding Area (m²)
Front Back		$2(\ldots \times \ldots)=_$
Top Bottom		-
Right Left		
Total		

The surface area is \qquad m^{2}. m^{2}. -

Surface area of smaller prism

Matching Faces	Diagram	Corresponding Area $\left(\mathbf{m}^{2}\right)$
Front Back		$2(\ldots \times \ldots)=_$
Top Bottom		
Right		
Left		
Total		

The surface area is \qquad m^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{m}^{2}\right)$
	$-\times-=$

The area of overlap is \qquad m^{2}.

Surface area of composite object

SA composite object $=$ \qquad $+$ \qquad $-$ \qquad
$=$ \qquad $+$ \qquad $-2($ \qquad
$=$ \qquad
The surface area of the composite object is \qquad m^{2}.
4. Find the surface area of this composite object.

Surface area of cube

The surface area is \qquad cm^{2}.

Surface area of rectangular prism

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Front / Back		$2(\ldots \times \ldots)=$
Top / Bottom		
Right / Left		
Total		

The surface area is \qquad cm^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
	${ }^{-} \times \ldots=$

The area of overlap is \qquad cm^{2}.

Surface area of composite object

SA composite object = \qquad $+$ \qquad $-$ \qquad
$=$ \qquad $+$ \qquad $-$ \qquad
$=$ \qquad
The surface area of the composite object is \qquad cm^{2}.
5. A loading dock is attached to one wall of a warehouse. The exterior of the buildings is to be painted at a cost of $\$ 2.50 / \mathrm{m}^{2}$. How much will it cost to paint the buildings?

Will the bottom of the warehouse and loading dock be painted? \qquad

Surface area of warehouse to be painted

Matching Faces	Diagram	Corresponding Area (m^{2})
Front Back		$\begin{aligned} & 2(\ldots \times) \\ & = \end{aligned}$
Top Sides		$\begin{aligned} & 3\left(_\times \square\right) \\ & =\square \end{aligned}$
Total		

The surface area of the warehouse to be painted is \qquad m^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{m}^{2}\right)$
	$-\times \ldots=$

The area of overlap is \qquad m^{2}.

Surface area of loading dock to be painted

Matching Faces	Diagram	Corresponding Area (m^{2})
Front Back		$\begin{aligned} & 2(\ldots \times \square) \\ & = \end{aligned}$
Top		\bar{L}^{\times}
Sides		$\begin{aligned} & 2\left(_\times \square\right) \\ & = \end{aligned}$
Total		-

The surface area of the loading dock to be painted is \qquad m^{2}.

Surface area of composite object to be painted
\qquad $+$ \qquad - \qquad $=$ \qquad
The surface area of the composite object to be painted is \qquad m^{2}.

So, the area to be painted is \qquad m^{2}.
The cost per square metre is: $\$$ \qquad
The cost to paint the buildings is: \qquad $\times \$$ \qquad $=$ \qquad

1.4 Skill Builder

Surface Areas of Triangular Prisms

To find the surface area of a right triangular prism, add the areas of its 5 faces. Look for matching faces with the same areas.

Matching Faces	Diagram	Corresponding Area (cm^{2})
Triangular		$2\left(\frac{1}{2} \times 6 \times 8\right)=48$
Rectangular		$10 \times 4=40$
		$6 \times 4=24$
		$8 \times 4=32$
Total		144

The surface area is $144 \mathrm{~cm}^{2}$.

Check

1. Find the surface area of the triangular prism.

	Matching Faces	Diagram	Corresponding Area (cm²)
	Triangular		$2\left(\frac{1}{2} \times \ldots \times \ldots\right)=$
			$\ldots{ }^{\times}=$
	Rectangular		$\ldots{ }^{\times}=$
			$_^{\times}{ }^{+}=$
	Total		-

The surface area is \qquad cm^{2}.

Surface Areas of Cylinders

To find the surface area of a right cylinder, add the areas of:

- the 2 circular faces

- the curved surface

Look for matching faces with the same areas.

The surface area is: $2 \pi r^{2}+2 \pi r h$

To calculate the surface area of this cylinder:

Matching Faces	Diagram	Corresponding Area (cm^{2})	
Top Bottom	3 cm	$2 \times \pi \times 3^{2}$ $=56.55$	
Curved surface	$2 \pi(3) \mathrm{cm}$		$2 \times \pi \times 3 \times 5$ $=94.25$
Total		150.80	

The surface area is about $151 \mathrm{~cm}^{2}$.

Check

1. Find the surface area of the cylinder.

Matching Faces	Diagram		Corresponding Area (cm^{2})
Top Bottom			$_^{\times} _^{\times}$
Curved surface		_cm	$_^{\times}{ }^{\times} \underbrace{\times} _^{\times}$
Total			

The surface area is about \qquad cm^{2}.

1.4 Surface Areas of Other Composite Objects

FOCUS Find the surface areas of composite objects made from right prisms and right cylinders.

Example 1 Finding the Surface Area of a Composite Object Made from a Rectangular Prism and a Triangular Prism

Find the surface area of this composite object.

Solution

Surface area of $=$
composite object

Surface area of rectangular prism

2(Area of overlap)

Surface area of rectangular prism

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$	
Front Back	$\boxed{6 c m}$	$2(6 \times 10)$ $=120$	
Top Bottom	$\boxed{10 \mathrm{~cm}}$	$2(10 \times 4)$ $=80$	
Right Left	6 cm	\square	$2(6 \times 4)$ $=48$
Total	4 cm	248	

The surface area is $248 \mathrm{~cm}^{2}$.
Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
6 cm\square 4 cm	$6 \times 4=24$

Surface area of triangular prism

Matching Faces	Diagram	Corresponding Area (cm^{2})
Triangular		$\begin{aligned} & 2\left(\frac{1}{2} \times 6 \times 8\right) \\ & =48 \end{aligned}$
Rectangular		$10 \times 4=40$
		$6 \times 4=24$
		$8 \times 4=32$
Total		144

The surface area is $144 \mathrm{~cm}^{2}$.

Surface area of composite object $=248+144-2(24)=344$
The surface area of the composite object is $344 \mathrm{~cm}^{2}$.

Check

1. The diagram shows the surface area of the two prisms that make up a composite object.
a) What is the area of the overlap?

The overlap is a \qquad -cm by \qquad -cm rectangle.
Area of overlap $=$ \qquad cm \times \qquad $\mathrm{cm}=$ \qquad cm^{2}

b) What is the surface area of the composite object?

Surface area of composite object $=$ Surface area of 2 prisms -2 (Area of overlap)

$$
=
$$ $+$ \qquad - \qquad

\qquad
The surface area of the composite object is \qquad .
2. Find the surface area of this composite object.

Surface area of triangular prism

Matching Faces	Diagram	Corresponding Area (cm²)
Triangular		$2\left({ }^{\times}\right.$
		$_^{\times} \times \ldots$
Rectangular		$_^{\times} \times \ldots$
		$_^{\times} \times{ }_{\square}=$
Total		-

The surface area is \qquad cm^{2}.

Surface area of cube

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Front Back Top Bottom Right Left	$\boxed{c m}$	
Total		$6\left(___\right)=$

Area of overlap

The area of overlap is \qquad cm^{2}.

The surface area is \qquad cm^{2}.

Surface area of composite object $=$ Surface area of 2 prisms -2 (Area of overlap)

$$
\begin{aligned}
& = \\
& = \\
& =
\end{aligned}
$$

\qquad - \qquad

The surface area of the composite object is \qquad cm^{2}.

Example 2 Finding the Surface Area of a Composite Object Made from a Rectangular Prism and a Cylinder

Find the surface area of this object.

Surface area of rectangular prism

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$	
Front Back Top Bottom	15 cm	12 cm	$4(12 \times 15)=720$
Right Left	12 cm	12 cm	$2(12 \times 12)=288$
Total		1008	

The surface area is $1008 \mathrm{~cm}^{2}$.

Surface area of cylinder

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Top Bottom	-2 cm	$2 \times \pi \times 2^{2} \doteq 25.13$
Curved surface		10 cm
		$2 \times \pi \times 2 \times 10 \doteq 125.67$
Total		

The surface area is about $150.80 \mathrm{~cm}^{2}$.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
2 cm	$\pi \times 2^{2}=12.57$

The area of overlap is about $12.57 \mathrm{~cm}^{2}$.
SA composite object $=$ SA rectangular prism + SA cylinder -2 (Area of overlap)

$$
\begin{aligned}
& \doteq 1008+150.80-2(12.57) \\
& \doteq 1133.66
\end{aligned}
$$

The surface area is about $1134 \mathrm{~cm}^{2}$.

Check

1. The diagram shows the surface area of the rectangular prism and cylinder that make up a composite object.
a) What is the area of the overlap?

The overlap is a \qquad .
Area of overlap $=$ \qquad

$$
\doteq \quad \mathrm{cm}^{2}
$$

b) What is the surface area of the composite object?

SA composite object $=$ SA \qquad + SA \qquad $-2($ \qquad

$$
\begin{aligned}
& = \\
& = \\
&
\end{aligned}
$$ $+$ \qquad $-$ \qquad

The surface area of the composite object is about \qquad cm^{2}.
2. Find the surface area of this composite object.

Surface area of cube

Matching Faces	Diagram	Corresponding Area (cm^{2})
Front Back Top Bottom Right Left		$6(\ldots \ldots+\ldots)=$
Total		

Surface area of cylinder

Matching Faces	Diagram	Corresponding Area (cm^{2})
Top Bottom	O-cm	
Curved surface		
Total		-

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
-cm	\times

$$
\begin{aligned}
\text { SA composite object } & =\text { SA ___ }+ \text { SA } \quad-2(\square) \\
& \doteq=\square \\
& \doteq=-\longrightarrow
\end{aligned}
$$

The surface area of the composite object is about \qquad cm^{2}.

Practice

1. Find the surface area of this composite object.

Surface area of rectangular prism

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Front Back Top Bottom		
Right Left		
Total		

The surface area is \qquad cm^{2}.

Surface area of triangular prism

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Triangular		
		-

Area of overlap

Diagram	Area $\left(\mathrm{cm}^{2}\right)$
	$-\times \ldots=-$

The area of overlap is $\quad \mathrm{cm}^{2}$.

Surface area of composite object

SA composite object
$=$ \qquad
$=$ \qquad
The surface area of the composite object is \qquad cm^{2}.

The surface area is \qquad cm^{2}.
2. Find the surface area of this composite object.

Surface area of cube

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Front Back Top Bottom		
Total		$6\left(\ldots __\right)=$

The surface area is \qquad cm^{2}.

Surface area of cylinder

Matching Faces	Diagram	Corresponding Area (cm^{2})
Top Bottom		${ }^{\times} \underbrace{}_{ـ} \times{ }_{\square}$
Curved surface		
Total		

The surface area is about \qquad cm^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
	$\ldots \times \ldots=$

The area of overlap is \qquad cm^{2}.

Surface area of composite object

SA composite object \doteq \qquad $+$ \qquad - \qquad

$$
\doteq
$$

The surface area of the composite object is about \qquad cm^{2}.
3. Calculate the surface area of the cake at the right.

Write your answer to the nearest tenth.

Surface area of smaller cake

Matching Faces	Diagram	Corresponding Area (cm^{2})
Top Bottom		$\times \ldots \ldots \ldots$
Curved surface		${ }^{\times}$
Total		

The surface area is about \qquad cm^{2}.

Surface area of larger cake

Matching Faces	Diagram	Corresponding Area (cm ${ }^{2}$)
Top Bottom		$\ldots \times \ldots \times \ldots \ldots$
Curved surface		$-\times \ldots \times \ldots \ldots$
Total	\ldots	

The surface area is about \qquad cm^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
	$\ldots \times \ldots$

The area of overlap is about \qquad cm^{2}.

Surface area of cake $=$ \qquad $+$ \qquad - \qquad

$$
\doteq
$$

\qquad
The surface area of the cake is about \qquad cm^{2}.

Unit 1 Puzzle

Square and Square-Root Days

A date in a given year can be written as the month number followed by the day number. For example, October 25 can be written as 10/25.

- In a square-root day, the month is the square root of the day.

For example, March 9 is a square-root day because it is written as $3 / 9$, and 3 is the square root of 9 .

List all the square-root days in a year.

- In a square day, the month is the square of the day.

For example, April 2 is a square day because it is written as $4 / 2$, and 4 is the square of 2 .

List all the square days in a year.

- A square year is a year which is a perfect square.

For example, the year 1600 is a square year because $1600=40 \times 40$.

List all the square years from 1000 to the present.

Unit 1 Study Guide

Skill	Description	Example
Identify fractions that are perfect squares and find their square roots.	A fraction is a perfect square if it can be written as the product of 2 equal fractions. The square root is one of the 2 equal fractions.	$\begin{aligned} & \frac{16}{25}=\frac{4}{5} \times \frac{4}{5} \\ & \sqrt{\frac{16}{25}}=\frac{4}{5} \end{aligned}$
Identify decimals that are perfect squares.	Use a calculator. The square root is a repeating or terminating decimal.	$\sqrt{1.69}=1.3$
Estimate square roots of numbers that are not perfect squares.	Find perfect squares close to the number. Use the squares and square roots number lines.	$\sqrt{\frac{3}{10}} \doteq \sqrt{\frac{4}{9}} \doteq \frac{2}{3} \quad \begin{align*} & 3 \text { is close to } 4 \\ & 10 \text { is close to } 9 \end{align*}$
Calculate the surface area of a composite object.	Add the areas of each of the 6 views. Or Add surface areas of the parts, then subtract for the overlap.	The surface area is 14 square units. $\begin{aligned} S A & =216+125.66-2(12.57) \\ & =316.52 \end{aligned}$ The surface area is about $317 \mathrm{~cm}^{2}$.

Unit 1 Review

1.1 1. Calculate the number whose square root is:
a) $\frac{3}{7}$
b) 9.9
$9.9 \times 9.9=$ \qquad

$$
{ }^{\times}{ }^{=}=
$$

9.9 is a square root of \qquad .
$\frac{3}{7}$ is a square root of \qquad .
2. Complete the table.

	Fraction	Is numerator a perfect square?	Is denominator a perfect square?	Is fraction a perfect square?
a)	$\frac{25}{81}$	-	-	-
b)	$\frac{7}{4}$	\longrightarrow	-	-
c)	$\frac{49}{65}$	-	-	-

3. Complete the table.

Decimal	Value of Square Root	Type of Decimal	Is decimal a perfect square?
a)	5.29		
b)	156.25		-

4. Find the square root of each number.
a) $\sqrt{\frac{25}{81}}=$ \qquad b) $\sqrt{59.29}=$
\qquad
1.2 5. Estimate $\sqrt{14.5}$. Explain your estimate.
14.5 is between \qquad and \qquad .
So, $\sqrt{14.5}$ is between $\sqrt{\square}$ and $\sqrt{ }$ \qquad . That is, $\sqrt{14.5}$ is between \qquad and \qquad .
Since 14.5 is closer to \qquad than \qquad ,$\sqrt{14.5}$ is closer to \qquad than \qquad .
So, $\sqrt{14.5}$ is between \qquad and \qquad and closer to \qquad -
5. Estimate each square root. Explain.
a) $\sqrt{\frac{2}{13}}$
2 is close to \qquad ; 13 is close to \qquad
b) $\sqrt{\frac{11}{70}}$ —. 11 is close to \qquad ; 70 is close to \qquad -

$$
\text { So, } \begin{aligned}
\sqrt{\frac{2}{13}} & =\sqrt{\square} \\
& \doteq
\end{aligned}
$$

So, $\sqrt{\frac{11}{70}} \doteq \sqrt{\square}$

$$
\doteq-
$$

7. Identify a decimal that has a square root between the two given numbers.

Check the answer.
a) 2 and 3
$2^{2}=$ \qquad and $3^{2}=$ \qquad
So, any number between \qquad and \qquad has a square root between 2 and 3 .
Choose \qquad —.
Check: $\sqrt{\square} \doteq$ \qquad
The decimal \qquad is one possible answer.
b) 6.5 and 7.5
\qquad $=$ \qquad and \qquad $=$
So, any number between \qquad and \qquad has a square root between 6.5 and 7.5.
Choose \qquad
Check: \square
\qquad
The decimal \qquad is one possible answer.
8. Find the length of the hypotenuse of each right triangle.
a)

$$
\begin{aligned}
& h^{2}= \\
& h^{2}= \\
& +
\end{aligned}
$$

$$
h^{2}=
$$

\qquad

$$
h=\sqrt{\square}
$$

$$
h \doteq
$$

\qquad

The length of the hypotenuse is about \qquad cm .
b)

$$
h^{2}=\ldots+
$$

$h^{2}=$ \qquad $+$

$$
\begin{aligned}
h^{2} & = \\
h & =\sqrt{\square} \\
h & =
\end{aligned}
$$

\qquad
1.3 9. This object is made from $1-\mathrm{cm}$ cubes. Find its surface area.

The surface area is \qquad cm^{2}.
10. Calculate the surface area of this composite object.

Surface area of cube

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
$-\ldots$		$6(\ldots \times \ldots)=$
$-\quad$		
Total		

The surface area is \qquad cm^{2}.

Surface area of rectangular prism

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
		-
		-
Total		

The surface area is \qquad cm^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
	$-\quad \times \ldots=$

The area of overlap is \qquad cm^{2}.

SA composite object $=$ \qquad $+$ \qquad - \qquad

$$
\begin{aligned}
& = \\
& = \\
&
\end{aligned}
$$ $+$ \qquad - \qquad

The surface area of the composite object is \qquad cm^{2}.
1.4 11. Find the surface area of this composite object.

Surface area of rectangular prism

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
-		
\square		-
\square		
-		
-		
Total		

The surface area is \qquad cm^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$

Surface area of triangular prism

Matching Faces	Diagram	Corresponding Area (cm $\left.{ }^{2}\right)$
Triangular		
		-
Rectangular		
Total		

The surface area is \qquad cm^{2}.

The area of overlap is \qquad cm^{2}.
SA = \qquad $+$ \qquad - \qquad
$=$ \qquad $+$ \qquad -
= \qquad
The surface area of the composite object is \qquad cm^{2}.
12. Find the surface area of this composite object.

The larger cylinder has diameter \qquad cm , so its radius is \qquad cm.

The smaller cylinder has diameter \qquad cm , so its radius is \qquad cm .

Surface area of smaller cylinder

Matching Faces	Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
Top Bottom		$-\times \ldots \times \ldots \ldots$
Curved surface		$-\times \ldots \times \ldots \times \ldots \ldots$
Total		

The surface area is about \qquad cm^{2}.

Surface area of larger cylinder

Matching Faces	Diagram	Corresponding Area (cm^{2})
Top Bottom		$\times \ldots$
Curved surface		$\times __{-} \times{ }_{-} \times{ }_{\square}$
Total		-

The surface area is about \qquad cm^{2}.

Area of overlap

Diagram	Corresponding Area $\left(\mathrm{cm}^{2}\right)$
	$\times \ldots \doteq$

The area of overlap is about \qquad cm^{2}.

Surface area of the composite object \doteq \qquad $+$ \qquad
\qquad

$$
\doteq
$$

\qquad
The surface area is about \qquad cm^{2}.

