What You'll Learn

- Draw and interpret scale diagrams.
- Apply properties of similar polygons.
- Identify and describe line symmetry and rotational symmetry.

Why It's Important

Similarity and scale diagrams are used by

- construction workers when they construct buildings and bridges
- motorists when they use maps to get around a city

Symmetry is used by

- interior designers when they arrange furniture and accessories in a room

Key Words

enlargement	congruent
reduction	reflection
scale diagram	line of reflection
scale factor	tessellation
polygon	rotation
non-polygon	rotational symmetry
similar polygons	order of rotation
proportional	angle of rotation symmetry
line symmetry	translation

Converting Between Metric Units of Length

This table shows the relationships among some of the units of length.

$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~m}=1000 \mathrm{~mm}$
$1 \mathrm{~cm}=0.01 \mathrm{~m}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$
$1 \mathrm{~mm}=0.001 \mathrm{~m}$
$1 \mathrm{~mm}=0.1 \mathrm{~cm}$

To convert 2.3 m to centimetres:
$1 \mathrm{~m}=100 \mathrm{~cm}$
So, to convert metres to centimetres, multiply by 100 .

$$
2.3 \mathrm{~m}=2.3(100 \mathrm{~cm})
$$

$$
=230 \mathrm{~cm}
$$

To convert 255 cm to metres:
$1 \mathrm{~cm}=0.01 \mathrm{~m}$
So, to convert centimetres to metres, multiply by 0.01 .

$$
\begin{aligned}
255 \mathrm{~cm} & =255(0.01 \mathrm{~m}) \\
& =2.55 \mathrm{~m}
\end{aligned}
$$

Check

1. Convert each measure to centimetres.
a) 7 m
$1 \mathrm{~m}=$ \qquad cm
So, $7 \mathrm{~m}=7($ \qquad
$=$ \qquad
b) 21 mm
$1 \mathrm{~mm}=$ \qquad
So, $21 \mathrm{~mm}=$ \qquad
$=$ \qquad
2. Convert each measure to metres.
a) 346 cm
$1 \mathrm{~cm}=$ \qquad m
So, $346 \mathrm{~cm}=346($ \qquad

$$
=
$$

\qquad
b) 1800 mm
$1 \mathrm{~mm}=$ \qquad
So, $1800 \mathrm{~mm}=$ \qquad
\qquad
3. Convert each measure to millimetres.
a) 6.5 cm
$1 \mathrm{~cm}=$ \qquad mm
So, $6.5 \mathrm{~cm}=6.5($ \qquad
$=$ \qquad
b) 3.8 m
$1 \mathrm{~m}=$ \qquad
So, $3.8 \mathrm{~m}=$ \qquad
$=$ \qquad

7.1 Scale Diagrams and Enlargements

FOCUS Draw and interpret scale diagrams that represent enlargements.

A diagram that is an enlargement or a reduction of another diagram is called a scale diagram. The scale factor is the relationship between the matching lengths on the two diagrams.

To find the scale factor of a scale diagram, we divide:
length on scale diagram
length on original diagram

Example 1 Using Matching Lengths to Determine the Scale Factor

Here is a scale diagram of a pin.
The actual length of the pin is 13 mm .
Find the scale factor of the diagram.

Solution

Measure the length of the pin in the diagram.
The length is 3.9 cm , or 39 mm .
The scale factor is: $\frac{\text { length on scale diagram }}{\text { length of pin }}=\frac{39 \mathrm{~mm}}{13 \mathrm{~mm}}$
$=3$

The scale factor is 3 . When the drawing is an enlargement, the scale factor is greater than 1 .

Check

1. Find the scale factor for each scale diagram.
a) The actual length of the ant is 6 mm . Measure the length of the ant in the diagram. Length = \qquad cm, or \qquad mm

Scale factor $=\frac{\text { length on scale diagram }}{\text { length of ant }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\bar{\square}
\end{aligned}
$$

The scale factor is \qquad .
b) Length of rectangle in scale diagram: Length of original rectangle: \qquad
Scale factor $=\frac{\text { length on scale diagram }}{\text { length on original diagram }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\bar{\square}
\end{aligned}
$$

The scale factor is \qquad .

To find the dimensions of a scale diagram, multiply each length on the original diagram by the scale factor.

Example 2 Using a Scale Factor to Determine Dimensions

This cylinder is to be enlarged by a scale factor of $\frac{5}{2}$.
Find the dimensions of the enlargement.

Solution

Write the scale factor as a decimal.
$\frac{5}{2}=5 \div 2$
$=2.5$
To write a fraction as a decimal, divide the numerator by the denominator.
oy tne aenominator.

Diameter of original cylinder: 2 cm
Diameter of enlargement: $2.5 \times 2 \mathrm{~cm}=5 \mathrm{~cm}$
Height of original cylinder: 5 cm
Height of enlargement: $2.5 \times 5 \mathrm{~cm}=12.5 \mathrm{~cm}$
The enlargement has diameter 5 cm and height 12.5 cm .

Check

1. A photo has dimensions 10 cm by 15 cm .

Enlargements are to be made with each scale factor below.
Find the dimensions of each enlargement.
a) Scale factor 4

Length of original photo: \qquad The length of a rectangle is
Length of enlargement: $4 \times$ \qquad $=$ \qquad
Width of original photo: \qquad
Width of enlargement: $4 \times$ \qquad $=$ \qquad
The enlargement has dimensions \qquad .
b) Scale factor $\frac{13}{4}$

Write the scale factor as a decimal.
\qquad
Length of original photo: \qquad
Length of enlargement: \qquad $=$ \qquad
Width of original photo: \qquad
Width of enlargement: \qquad $=$ \qquad
The enlargement has dimensions \qquad .

Practice

1. Find the scale factor for each scale diagram.
a) The actual length of the cell phone button is 9 mm .

Measure the length of the button in the diagram.
Length = \qquad cm, or \qquad mm

Scale factor $=\frac{\text { length on scale diagram }}{\text { length of button }}=$ \qquad
\qquad

The scale factor is \qquad .
b) The actual width of the paperclip is 6 mm .

The width of the paperclip in the diagram is: Width $=$ \qquad cm, or \qquad mm

Scale factor $=\frac{\text { width on scale diagram }}{\text { width of paperclip }}$

$$
=\underline{\square}=
$$

The scale factor is \qquad .
2. Find the scale factor for this scale diagram.

Original length: \qquad Length on scale diagram: \qquad
Scale factor $=\frac{\text { length on scale diagram }}{\text { length on original diagram }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\square
\end{aligned}
$$

The scale factor is \qquad .

Scale diagram
3. Enlargements of a photo are to be placed in different catalogues.

The original photo has side length 4 cm .
Find the side length for each enlargement of this photo.
a) Enlargement with scale factor 2.5

Side length of original photo: \qquad
Side length of enlargement: $2.5 \times$ \qquad $=$ \qquad
The enlargement has side length \qquad .
b) Enlargement with scale factor $\frac{7}{4}$

Write the scale factor as a decimal:
\qquad
\qquad
Side length of original photo:
Side length of enlargement:
\qquad

The enlargement has side length \qquad .
4. Suppose you draw a scale diagram of this triangle.

You use a scale factor of 2.75 .
What are the side lengths of the enlargement?
Side lengths of original triangle: \qquad
Scale factor: \qquad

Side lengths of enlargement:
\qquad
\qquad
\qquad
\qquad

7.2 Scale Diagrams and Reductions

FOCUS Draw and interpret scale diagrams that represent reductions.

A scale diagram can be smaller than the original diagram.
This type of scale diagram is called a reduction.
A reduction has a scale factor that is less than 1 .

Example 1 Using Matching Lengths to Determine the Scale Factor

Find the scale factor for this reduction.

Solution

Measure the diameter of the original circle. The diameter is 5 cm .
Measure the diameter of the scale diagram. The diameter is 2 cm .
The scale factor is: $\frac{\text { diameter on scale diagram }}{\text { diameter on original diagram }}=\frac{2 \mathrm{~cm}}{5 \mathrm{~cm}}=\frac{2}{5}$
The scale factor is $\frac{2}{5}$ The scale factor is less than 1.

Check

1. Find the scale factor for each reduction.
a) Measure the length of the original line segment. Length = \qquad cm

Measure the length of the line segment in the scale diagram. Length = \qquad cm

Scale factor $=\frac{\text { length on scale diagram }}{\text { length on original diagram }}$

$$
=
$$

\qquad
\qquad
The scale factor is \qquad .
b) Length of original rectangle: \qquad
Length of rectangle in scale diagram: \qquad
Scale factor $=\frac{\text { length on scale diagram }}{\text { length on original diagram }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\square
\end{aligned}
$$

The scale factor is \qquad -

Example 2 Using a Scale Factor to Determine Dimensions

The top view of a rectangular patio table has length 165 cm and width 105 cm .
A reduction is to be drawn with scale factor $\frac{1}{5}$.
Find the dimensions of the reduction.

Solution

Write the scale factor as a decimal.
$\frac{1}{5}=1 \div 5=0.2$
Length of original table: 165 cm
Length of reduction: $0.2 \times 165 \mathrm{~cm}=33 \mathrm{~cm}$
Width of original table: 105 cm
Width of reduction: $0.2 \times 105 \mathrm{~cm}=21 \mathrm{~cm}$
The reduction has dimensions 33 cm by 21 cm .

Check

1. A window has dimensions 104 cm by 89 cm .

A reduction is to be drawn with scale factor $\frac{1}{20}$.
Find the dimensions of the reduction.
Write the scale factor as a decimal. $\frac{1}{20}=$ \qquad
Length of original window: \qquad
Length of reduction: \qquad $=$ \qquad
Width of original window: \qquad
Width of reduction: \qquad $=$ \qquad
The reduction has dimensions \qquad
2. The top view of a rectangular swimming pool has dimensions 10 m by 5 m .

A reduction is to be drawn with scale factor $\frac{1}{50}$.
Find the dimensions of the reduction.
Write the scale factor as a decimal.
\qquad
Length of pool: \qquad
Length of reduction: \qquad
Convert this length to centimetres:
$1 \mathrm{~m}=100 \mathrm{~cm}$
So, \qquad

Width of pool: \qquad
Width of reduction: \qquad
Convert this width to centimetres:
\qquad

The reduction has dimensions \qquad .

Practice

1. Find the scale factor for each reduction.
a) Diameter of original circle: \qquad cm
Diameter of reduction: \qquad cm

Scale factor $=\frac{\text { diameter on scale diagram }}{\text { diameter on original diagram }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\bar{\square}
\end{aligned}
$$

The scale factor is \qquad .
b) Length of original line segment: \qquad
Length of reduction: \qquad

Scale factor $=\frac{\text { length on scale diagram }}{\text { length on original diagram }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\square
\end{aligned}
$$

The scale factor is \qquad .
2. A line segment has length 36 cm .

A reduction is to be drawn with scale factor $\frac{3}{20}$.
Draw a line segment with the new length.
Write the scale factor as a decimal.

Original length: \qquad
Length of reduction: \qquad $=$ \qquad
Draw the line segment:
3. A reduction of each object is to be drawn with the given scale factor. Find the matching length in centimetres on the reduction.
a) A water ski has length 170 cm .

The scale factor is 0.04 .
Length of water ski: \qquad
Length of reduction: \qquad $=$ \qquad
b) A canoe has length 4 m .

The scale factor is $\frac{3}{50}$.
Write the scale factor as a decimal.
\qquad
Length of canoe: \qquad
Length of reduction: \qquad
\qquad
Convert this length to centimetres: \qquad
4. Suppose you draw a scale diagram of this triangle.

You use a scale factor of $\frac{1}{4}$.
What are the side lengths of the reduction?
Side lengths of original triangle:
Write the scale factor as a decimal.

Side lengths of reduction:
\qquad
\qquad
\qquad

7.3 Skill Builder

Polygons

A polygon is a closed shape with straight sides.
Exactly 2 sides meet at a vertex.

This shape is a polygon.

These shapes are non-polygons.

This shape has a curved side.

This shape is not closed.

Check

1. Is each shape a polygon or a non-polygon?
a)

b)

c)

d)

\qquad
\qquad
e)

f)

7.3 Similar Polygons

FOCUS Recognize similar polygons, then use their properties to solve problems.

When one polygon is an enlargement or reduction of another polygon, we say the polygons are similar.
Similar polygons have the same shape, but not necessarily the same size.

When two polygons are similar:

- matching angles are equal AND
- matching sides are proportional

Example 1 Identifying Similar Polygons

Are these quadrilaterals similar? Explain.

Solution

Check matching angles: $\angle \mathrm{Q}=\angle \mathrm{U}=90^{\circ} \quad \angle \mathrm{R}=\angle \mathrm{V}=135^{\circ}$

$$
\angle S=\angle W=45^{\circ} \quad \angle T=\angle X=90^{\circ}
$$

All matching angles are equal.
So, the first condition for similar polygons is met.
Check matching sides.
The matching sides are: $Q R$ and $U V, R S$ and $V W, S T$ and $W X$, and $T Q$ and $X U$.
Find the scale factors.

$$
\begin{aligned}
\frac{\text { length of } \mathrm{QR}}{\text { length of } \mathrm{UV}} & =\frac{1.5 \mathrm{~cm}}{1.0 \mathrm{~cm}} & \frac{\text { length of } \mathrm{RS}}{\text { length of } \mathrm{VW}} & =\frac{4.2 \mathrm{~cm}}{2.8 \mathrm{~cm}} \\
& =1.5 & & =1.5 \\
\frac{\text { length of } \mathrm{ST}}{\text { length of } \mathrm{WX}} & =\frac{4.5 \mathrm{~cm}}{3.0 \mathrm{~cm}} & \frac{\text { length of } \mathrm{TQ}}{\text { length of } X U} & =\frac{3.0 \mathrm{~cm}}{2.0 \mathrm{~cm}} \\
& =1.5 & & =1.5
\end{aligned}
$$

All scale factors are equal, so matching sides are proportional.
Since matching angles are equal and matching sides are proportional, the quadrilaterals are similar.

Check

1. Are these rectangles similar?

Check matching angles.

The measure of each angle in a rectangle is \qquad .

So, matching angles are \qquad .

Check matching sides.

The matching sides are: \qquad and \qquad and \qquad and \qquad .
Find the scale factors.

$$
\begin{aligned}
& \frac{\text { length of }}{\text { length of }}= \\
&=\square
\end{aligned}
$$

\qquad
Since opposite sides of a rectangle are equal, check only one pair of matching lengths and one pair of

The scale factors \qquad equal.
So, the sides \qquad proportional.
The rectangles \qquad similar.
2. Are these parallelograms similar?

Check matching angles. $\angle \mathrm{M}=$ \qquad $=$ \qquad $\angle N=$ \qquad
\qquad
\qquad

All matching angles \qquad equal.

Check matching sides.
The matching sides are: \qquad and \qquad and \qquad and \qquad Since opposite sides of a parallelogram are equal, check only two pairs of
Find the scale factors.

$\frac{\text { length of }}{\text { length of }}=$	$=\square$	
	$=\square$	$=\square$

The scale factors \qquad equal.
So, the sides \qquad proportional.
The parallelograms \qquad similar.

Example 2
 Determining Lengths in Similar Polygons

These two quadrilaterals are similar.
Find the length of JM.

Solution

Quadrilateral JKLM is a reduction of quadrilateral BCDE.
To find the scale factor of the reduction,
choose a pair of matching sides whose lengths are both known:
$C D=20 \mathrm{~cm}$ and $\mathrm{KL}=8 \mathrm{~cm}$

Scale factor $=\frac{\text { length on reduction }}{\text { length on original }}$

$$
\begin{aligned}
& =\frac{8 \mathrm{~cm}}{20 \mathrm{~cm}} \\
& =0.4
\end{aligned}
$$

The scale factor is 0.4.
Use the scale factor to find the length of JM.
$J M$ and $B E$ are matching sides.
Length of $B E: 16 \mathrm{~cm}$
Scale factor: 0.4
Length of JM: $0.4 \times 16 \mathrm{~cm}=6.4 \mathrm{~cm}$
So, JM has length 6.4 cm .

Check

1. These two polygons are similar.

Find the length of JK.

Polygon FGHJK is an enlargement of polygon ABCDE.
To find the scale factor, choose a pair of matching
sides whose lengths are both known:

Scale factor $=\frac{\text { length on enlargement }}{\text { length on original }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\square
\end{aligned}
$$

The scale factor is \qquad .
Use the scale factor to find the length of JK.
$J K$ and DE are matching sides.
Length of $D E$: \qquad
Scale factor: \qquad
Length of JK: \qquad
So, JK has length \qquad -
2. These two polygons are similar.

Find the length of YZ .

Polygon WXYZ is a \qquad of polygon STUV.
To find the scale factor, choose a pair of matching sides whose lengths are both known:

$$
\begin{aligned}
\text { Scale factor } & =\frac{\text { length on }}{\text { length on original }} \\
& =\overline{\underline{ }} \\
& =
\end{aligned}
$$

The scale factor is \qquad .
Use the scale factor to find the length of $Y Z$.
UV and YZ are matching sides.
Length of UV: \qquad
Scale factor: \qquad
Length of UV: \qquad
So, UV has length \qquad .

Practice

1. Are these quadrilaterals similar?

Check matching angles. $\angle \mathrm{A}=$ \qquad $=$ \qquad

$$
\angle B=\ldots=
$$

\qquad
All matching angles \qquad equal.

Check matching sides.
The matching sides are: $A B$ and \qquad and $B C$ and \qquad .
Find the scale factors.

matching sides.

The scale factors \qquad equal.
So, the sides \qquad proportional.
The quadrilaterals \qquad similar.
2. Are any of these rectangles similar?

The measure of each angle in a rectangle is \qquad -

So, for any two rectangles, matching angles are \qquad .

Check matching lengths and widths in pairs of rectangles.
For rectangles ABCD and EFGH, the scale factors are:

The scale factors \qquad equal.
So, the sides \qquad proportional.
The rectangles \qquad similar.

For rectangles ABCD and JKLM, the scale factors are:

The scale factors \qquad equal.
So, the sides \qquad proportional.
The rectangles \qquad similar.

Is rectangle EFGH similar to rectangle JKLM?
Use what we know to find out.
We know that rectangle ABCD \qquad to rectangle EFGH.
We know that rectangle $A B C D$ \qquad to rectangle JKLM.
So, we know rectangle EFGH \qquad to rectangle JKLM.
3. These two polygons are similar.

Find the length of UV.

Polygon STUVWX is an enlargement of polygon LMNPQR.
To find the scale factor, choose a pair of matching sides whose lengths are both known:

Scale factor $=\frac{\text { length on enlargement }}{\text { length on original }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =
\end{aligned}
$$

The scale factor is \qquad .

Use the scale factor to find the length of UV.
UV and NP are matching sides.
Length of NP: \qquad
Scale factor: \qquad
Length of UV: \qquad
So, UV has length \qquad .

Sum of the Angles in a Triangle

In any triangle, the sum of the angle measures is 180°.
So, to find an unknown angle measure:

- start with 180°
- subtract the known measures

An isosceles triangle has 2 equal sides and 2 equal angles.
To find the measure of the third angle, To find the measure of each equal angle, subtract the measure of the equal angles twice. subtract the known angle from 180°, then divide by 2 .

$$
\begin{aligned}
\angle A & =180^{\circ}-50^{\circ}-50^{\circ} \\
& =80^{\circ}
\end{aligned}
$$

Sum of equal angles is: $180^{\circ}-40^{\circ}=140^{\circ}$
Measure of each equal angle: $140^{\circ} \div 2=70^{\circ}$

Check

1. Find the measure of the third angle.
a)

b)

$\angle E=180^{\circ}-$
= \qquad
\qquad $-$
$\angle \mathrm{Q}=$ \qquad
\qquad
\qquad
2. Find the measure of each equal angle.

Sum of equal angles is:
180° - \qquad $=$ \qquad
Measure of each equal angle:
\qquad $\div 2=$ \qquad

7.4 Similar Triangles

FOCUS Use the properties of similar triangles to solve problems.

A triangle is a special polygon.
When two triangles are similar:

- matching angles are equal OR
- matching sides are proportional

The order in which similar triangles are named gives a lot of information.

The symbol ~ means
"is similar to."

Then, $\angle A=\angle D, \angle B=\angle E$, and $\angle C=\angle F$
Similarly, $A B$ matches $D E, B C$ matches $E F$, and $A C$ matches $D F$.

Example 1 Identifying Similar Triangles

Name the similar triangles.

Solution

Angle measures are not given.
So, find out if matching sides are proportional.
In $\triangle D E F$, order the sides from shortest to longest: $\mathrm{FD}, \mathrm{EF}, \overline{\mathrm{DE}}$
In $\triangle X Y Z$, order the sides from shortest to longest: $X Y, Y Z, Z X$
Find the scale factors of matching sides.

$$
\begin{aligned}
\frac{\text { length of } \mathrm{FD}}{\text { length of } X Y} & =\frac{3.0 \mathrm{~cm}}{2.0 \mathrm{~cm}} & \frac{\text { length of } \mathrm{EF}}{\text { length of } Y Z} & =\frac{3.6 \mathrm{~cm}}{2.4 \mathrm{~cm}}
\end{aligned}
$$

Since all scale factors are the same, the triangles are similar.

The longest and shortest sides meet at vertices: D and X

The two longer sides meet at vertices:
The two shorter sides meet at vertices:
E and Z
F and Y

So, \triangle DEF ~ $\triangle X Z Y$

Check

1. In each diagram, name two similar triangles.
a) Two angles in each triangle are given. The measure of the third angle in each triangle is:
180° - \qquad

List matching angles:
$\angle A=$ \qquad $=$ \qquad
$\angle B=$ \qquad
$\angle C=$ \qquad $=$ \qquad
Matching angles \qquad equal.
So, the triangles \qquad similar.

To name the triangles, order the letters so matching angles correspond.
$\triangle \mathrm{ABC} \sim \triangle$ \qquad
b) Find out if matching sides are proportional.

In $\triangle D E F$, order the sides from shortest to longest:

In $\triangle \mathrm{JKL}$, order the sides from shortest to longest:

Find the scale factors of matching sides.

All scale factors are \qquad . So, the triangles \qquad .
The two longer sides meet at vertices:
___ and \qquad
The two shorter sides meet at vertices: \square and \qquad
The longest and shortest sides meet at vertices: \qquad and \qquad
So, \triangle DEF ~ \triangle \qquad

Example 2 Using Similar Triangles to Determine a Length

These two triangles are similar.
Find the length of TU.

Solution

List matching angles:
$\angle S=\angle P \quad \angle T=\angle Q \quad \angle U=\angle R$
So, $\triangle \mathrm{STU} \sim \triangle \mathrm{PQR}$
$\triangle S T U$ is an enlargement of $\triangle P Q R$.

Choose a pair of matching sides
whose lengths are both known:
$S U=6 \mathrm{~cm}$ and $P R=2 \mathrm{~cm}$
Scale factor $=\frac{\text { length on enlargement }}{\text { length on original }}$

$$
\begin{aligned}
& =\frac{6 \mathrm{~cm}}{2 \mathrm{~cm}} \\
& =3
\end{aligned}
$$

The scale factor is 3 .
Use the scale factor to find the length of TU.
TU and QR are matching sides.
Length of QR: 3 cm
Scale factor: 3
Length of TU: $3 \times 3 \mathrm{~cm}=9 \mathrm{~cm}$

So, TU has length 9 cm .

Check

1. These two triangles are similar.

Find the length of XV .

List matching angles:
$\angle \mathrm{F}=$ \qquad
\qquad $\angle H=$ \qquad
So, \triangle FGH $\sim \triangle$ \qquad is a reduction of \qquad .

Choose a pair of matching sides whose lengths are both known:

Scale factor $=\frac{\text { length on reduction }}{\text { length on original }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =\bar{Z}
\end{aligned}
$$

The scale factor is \qquad .
Use the scale factor to find the length of XV .
XV and FG are matching sides.
Length of FG : \qquad
Scale factor: \qquad
Length of XV : \qquad

So, XV has length \qquad .

Practice

1. In each diagram, name two similar triangles.
a) Two angles in each triangle are given. The measure of the third angle
 in each triangle is: $180^{\circ}-$ \qquad
List matching angles:
$\angle F=$ \qquad $=$ \qquad $\angle G=$ \qquad $=$ \qquad $\angle H=$ \qquad $=$ \qquad
Matching angles \qquad equal, so, the triangles \qquad similar.
To name the triangles, order the letters so matching angles correspond. $\triangle F G H \sim \triangle$ \qquad
b) Find out if matching sides are proportional.

In $\triangle J K L$, order the sides from shortest to longest: \qquad
In $\triangle \mathrm{QRS}$, order the sides from shortest to longest: \qquad
Find the scale factors of matching sides.

$$
\begin{aligned}
& \frac{\text { length of }}{\text { length of }}=\underline{=} \\
& \frac{\text { length of }}{\text { length of }}=\underline{\square}= \\
& \frac{\text { length of }}{\text { length of }}=
\end{aligned}
$$

All scale factors are \qquad . So, the triangles \qquad .
The longest and shortest sides meet at vertices: \qquad and \qquad
The two shorter sides meet at vertices: \qquad and \qquad
The two longer sides meet at vertices: \qquad and \qquad
So, $\triangle \mathrm{JKL} \sim \triangle$ \qquad
2. Are these two triangles similar?

In $\triangle P Q R$, order the sides from shortest to longest:

In $\triangle B C D$, order the sides from shortest to longest:

Find the scale factors of matching sides.

All scale factors are \qquad . So, the triangles \qquad .
3. These two triangles are similar.

Find the length of EC.
List matching angles:
$\angle C=$ \qquad $\angle D=$ \qquad $\angle E=$ \qquad
So, $\triangle C D E \sim \triangle$ \qquad

\qquad is a reduction of \qquad .

Choose a pair of matching sides whose lengths are both known:

Scale factor $=\frac{\text { length on reduction }}{\text { length on original }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =
\end{aligned}
$$

The scale factor is \qquad .

Use the scale factor to find the length of EC.
EC and \qquad are matching sides.
Length of \qquad : \qquad
Scale factor: \qquad
Length of EC: \qquad
So, EC has length \qquad .
4. At a certain time of day, two trees cast shadows.

Find the height of the taller tree.

Matching angles are \qquad .

So, $\triangle \mathrm{ABC} \sim \triangle$ \qquad
$\triangle X Y Z$ is an \qquad of $\triangle A B C$.

Use sides \qquad

to find the scale factor.

The scale factor is 1.8 .
Use the scale factor to find the height of the taller tree, YZ .
$B C$ and $Y Z$ are matching sides.
Length of $B C$: \qquad Scale factor: \qquad
Length of YZ:
So, the height of the taller tree is \qquad .
5. The two triangles in this diagram are similar.

Find the length of $D E$.

To better see the individual triangles, we draw the triangles separately.

$\angle A=$ \qquad $\angle B=$ \qquad $\angle C=$
So, $\triangle \mathrm{ABC} \sim \triangle$
\qquad is a reduction of \qquad .

Choose a pair of matching sides whose lengths are both known:

Scale factor $=\frac{\text { length on reduction }}{\text { length on original }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =
\end{aligned}
$$

The scale factor is \qquad .
Use the scale factor to find the length of $D E$.
\qquad and \qquad are matching sides.
Length of \qquad :
Scale factor: \qquad
Length of DE: \qquad
So, DE has length \qquad .

Can you ...

- Find the scale factor for a scale diagram?
- Use a scale factor to determine a length?
- Identify similar polygons and triangles?
- Use similar polygons and triangles to determine a length?
7.1 1. Find the scale factor for this scale diagram.

The actual diameter of the head of the pushpin is 6 mm .
Measure the diameter of the pushpin in the diagram.
Length = \qquad cm, or \qquad mm

Scale factor $=\frac{\text { length on scale diagram }}{\text { length of pushpin }}$

$$
=\overline{\underline{\square}}
$$

$$
=
$$

\qquad
The scale factor is \qquad .

2. A baby picture is to be enlarged.

The dimensions of the photo are 5 cm by 7 cm .
Find the dimensions of the enlargement with a scale factor of 3.2.
Length of original photo: \qquad
Length of enlargement: $3.2 \times$ \qquad = \qquad

Width of original photo: \qquad
Width of enlargement: \qquad \times \qquad $=$ \qquad

The enlargement has dimensions \qquad .
7.2 3. Find the scale factor for this reduction.

Length of original line segment: \qquad cm Length of reduction: \qquad cm

Scale factor $=\frac{\text { length on reduction }}{\text { length on original diagram }}$
Scale diagram

$$
=\underline{\square}
$$

$$
=
$$

\qquad

The scale factor is \qquad .
4. A reduction of a lacrosse stick is to be drawn with a scale factor of $\frac{7}{50}$. The lacrosse stick has length 100 cm .
Find the length of the reduction.

Write the scale factor as a decimal.
$\frac{7}{50}=$ \qquad
Length of lacrosse stick: \qquad
Length of reduction: \qquad \times \qquad $=$ \qquad
The reduction has length \qquad .
7.3 5. These two quadrilaterals are similar.

Find the length of GH.

Quadrilateral FGHJ is a \qquad of quadrilateral BCDE.
To find the scale factor, choose a pair of matching sides whose lengths are both known:

Scale factor $=\frac{\text { length on }}{\text { length on original }}$

$$
\begin{aligned}
& =\square \\
& =\square
\end{aligned}
$$

The scale factor is \qquad .
Use the scale factor to find the length of GH.
GH and \qquad are matching sides.
Length of \qquad : \qquad
Scale factor: \qquad
Length of GH: \qquad
So, GH has length \qquad .
7.4 6. Are these 2 triangles similar?

Find out if matching sides are proportional.
In $\triangle K L M$, order the sides from shortest to longest: \qquad
In $\triangle \mathrm{NPQ}$, order the sides from shortest to longest: \qquad
Find the scale factors of matching sides.
$\frac{\text { length of }}{\text { length of }}=\underline{\square}=$
$\frac{\text { length of }}{\text { length of }}=\underline{=}=$ \qquad
$\frac{\text { length of }}{\text { length of }}=\underline{=}=$ \qquad
All scale factors are \qquad . So, the triangles \qquad .
The two shorter sides meet at vertices: \qquad and \qquad
The longest and shortest sides meet at vertices: \qquad and \qquad
The two longer sides meet at vertices: \qquad and \qquad
So, $\triangle K L M \sim \triangle$ \qquad
7. At a certain time of day, a street light and
a stop sign cast shadows.
Find the height of the street light.
Matching angles are \qquad .
So, \triangle RST $\sim \triangle$ \qquad
\triangle \qquad is an enlargement of
\triangle \qquad _.
Use sides \qquad and
\qquad to find the scale factor.
$\frac{\text { length on enlargement }}{\text { length on original }}=$ \qquad
$=$

Lines of Symmetry in Quadrilaterals

A line of symmetry divides a shape into 2 matching, or congruent parts.
If we fold a shape along its line of symmetry, the parts match exactly.

This trapezoid has 1 line of symmetry. This rectangle has 2 lines of symmetry.

Check

1. How many lines of symmetry does each shape have? Draw in the lines.
a)

b)

Number of lines of symmetry: \qquad Number of lines of symmetry: \qquad
c)

Number of lines of symmetry: \qquad Number of lines of symmetry: \qquad

Reflections

When a shape is reflected in a mirror, we see a reflection image. A point and its reflection image are the same distance from a line of reflection.

A shape and its reflection image face opposite ways.

Check

1. Do these pictures show reflections?

If your answer is Yes, draw the line of reflection.
a)

b)

2. Draw each reflection image.
a)

b)

line of reflection

7.5 Reflections and Line Symmetry

FOCUS Draw and classify shapes with line symmetry.

When congruent copies of a polygon are used to cover a flat surface with no overlaps or gaps, a tessellation is created.

Example 1 Identifying Lines of Symmetry in Tessellations

Identify the lines of symmetry in this tessellation.

Solution

A line of symmetry must pass through the centre of the design. Use a Mira to check for vertical, horizontal, and diagonal lines of symmetry.

This tessellation has 4 lines of symmetry.
The pattern on one side of each line is a mirror image of the pattern on the other side of the line.

Check

1. Draw the lines of symmetry in each tessellation.
a) Use a Mira.

Is there a vertical line of symmetry? \qquad
Is there a horizontal line of symmetry? \qquad
Are there any diagonal lines of symmetry? \qquad
Draw the lines of symmetry.

b) Is there a vertical line of symmetry? \qquad Is there a horizontal line of symmetry? \qquad Are there any diagonal lines of symmetry? \qquad Draw the lines of symmetry.

Two shapes may be related by a line of reflection.

Example 2 Identifying Reflected Shapes

Which triangle is a reflection of the shaded triangle?
Draw the line of reflection.

Solution

Use a Mira to check.
Triangle 1:
The triangle is to the right of the shaded triangle.
So, try a vertical line of reflection.
The triangle is the reflection image of the shaded triangle in Line A.

Triangle 2:
The triangle is above the shaded triangle.
So, try a horizontal line of reflection.
The triangle is not a reflection image
of the shaded triangle.

Check

1. Which polygon is a reflection of the shaded polygon?

Draw the line of reflection.

Use a Mira to check.
Polygon 1:
The polygon is to the \qquad of the shaded polygon.

So, try a \qquad line of reflection.
The polygon \qquad a reflection image
of the shaded polygon.
If the polygon is a reflection image, draw the line of reflection.

Polygon 2:
The polygon is \qquad the shaded polygon.
So, try a \qquad line of reflection.
The polygon \qquad a reflection image
of the shaded polygon.
If the polygon is a reflection image, draw the line of reflection.

Example 3 Completing a Shape Given its Line of Symmetry

Reflect quadrilateral $A B C D$ in the line of reflection to make a larger shape.

Solution

A point and its image must be the same distance from the line of reflection.
Point A: on the line of reflection
Reflection image: Point A reflects onto itself.
Point B: 2 squares above line of reflection Reflection image: Point B^{\prime} is 2 squares below line of reflection.

Point C: 2 squares above line of reflection Reflection image: Point C^{\prime} is 2 squares below

Point	Image
$A(1,3)$	$A(1,3)$
$B(2,5)$	$B^{\prime}(2,1)$
$C(4,5)$	$C^{\prime}(4,1)$
$D(5,3)$	$D(5,3)$

Point D: on the line of reflection
Reflection image: Point D reflects onto itself.
Plot the points. Join the points in order to complete the larger shape.

```
Point }\mp@subsup{B}{}{\prime}\mathrm{ is the image of point B.
    We say: "B prime"
```


Check

1. Reflect quadrilateral EFGH in the line of reflection to make a larger shape.

Point E : on the line of reflection
Reflection image: \qquad
Point F: 2 squares left of line of reflection
Reflection image: \qquad

Point G:
Reflection image: \qquad

Point H: \qquad
Reflection image: \qquad
Plot the points.
Join the points to complete the larger shape.

Point	Image
$\mathrm{E}(3,5)$	$\mathrm{E}(\ldots, 5)$
$\mathrm{F}(1,3)$	$\mathrm{F}^{\prime}(\ldots, 3)$
$\mathrm{G}(2,1)$	$\mathrm{G}^{\prime}(\ldots, 1)$
$\mathrm{H}(3,1)$	$\mathrm{H}(\ldots, 1)$

Practice

1. Draw the lines of symmetry in each tessellation.
a)

b)

2. Which hexagons are reflections of the shaded hexagon?

Draw the line of reflection each time.

Hexagon 1:
The hexagon is \qquad the shaded hexagon.
So, try a \qquad line of reflection.
The hexagon \qquad a reflection image of the shaded hexagon. If the polygon is a reflection image, draw the line of reflection, Line A.

Hexagon 2:
The hexagon is \qquad and to the \qquad of the shaded polygon.
So, try a \qquad line of reflection.

The hexagon \qquad a reflection image of the shaded hexagon.
If the polygon is a reflection image, draw the line of reflection, Line B.
Hexagon 3:
The hexagon is to the \qquad of the shaded hexagon.
So, try a \qquad line of reflection.
The hexagon \qquad a reflection image of the shaded hexagon.
If the polygon is a reflection image, draw the line of reflection, Line C.
3. Reflect each shape in the line of reflection to make a larger shape.
a)

Point	Image
$A(0,5)$	$A(\ldots, \ldots)$
$B(2,5)$	$B(\ldots, \ldots)$
$C(3,3)$	$C^{\prime}(\ldots, \ldots)$
$D(2,1)$	$D^{\prime}(\ldots,-)$

	y											
10												
8												
6												
4	A	B	line of reflection									
2			C									
		D										
0	2	4	6	8	10							

b)

Point	Image
	-
	-
	-
	-
	-

c)

Point	Image
	-
	-
	-

7.6 Skill Builder

Rotations

A rotation may be clockwise or counterclockwise.
Some common rotations are $90^{\circ}, 180^{\circ}$, and 270°.
This shape was rotated 90° clockwise about point R.

$\angle A R A^{\prime}=90^{\circ}, \angle B R B^{\prime}=90^{\circ}$, and so on.
Each angle is the angle of rotation.
We can use a protractor to check.

Check

1. For each picture, write the angle of rotation.
a)

A			B								
			C		D	E^{\prime}			F^{\prime}		
						\cdot					
					R						
F					E	D^{\prime}	C^{\prime}				
								B^{\prime}			
								A^{\prime}			

Angle of rotation: \qquad
b)

Angle of rotation: \qquad
2. Draw the image after each rotation about point R.
a) 90° clockwise

b) 180°

7.6 Rotations and Rotational Symmetry

FOCUS Draw and classify shapes with rotational symmetry.

A shape has rotational symmetry when it can be turned less than 360° about its centre to match itself exactly.
The number of matches in a complete turn is the order of rotation.

Example 1 Determining the Order of Rotational Symmetry

Find the order of rotational symmetry for this star.

Solution

Trace the star.
Draw a dot on the top vertex of each star.

Place the tracing on top of the star so they match exactly.
Rotate the tracing about its centre
to see how many times the stars match
in one complete turn.
The stars match 5 times.
So, the star has rotational symmetry of order 5 .

Check

1. Find the order of rotational symmetry for each shape.

Use tracing paper to help.
a)

The shape and its tracing match \qquad times. So, the shape has rotational symmetry of order \qquad .
b)

The shape and its tracing match \qquad times. So, the shape has rotational symmetry of order \qquad .

The smallest angle you need to turn for two shapes to match is the angle of rotation.

The angle of rotation symmetry $=\frac{360^{\circ}}{\text { the order of rotation }}$

Example 2 Determining the Angle of Rotation Symmetry

Find the angle of rotation symmetry for this shape.

Solution

In one complete turn, the shape and its tracing match 6 times.
So, the order of rotation is 6 .
The angle of rotation symmetry is:

$$
\begin{aligned}
\frac{360^{\circ}}{\text { the order of rotation }} & =\frac{360^{\circ}}{6} \\
& =60^{\circ}
\end{aligned}
$$

The angle of rotation symmetry is 60°.

Check

1. Find the angle of rotation symmetry for each shape.
a)

The shape and its tracing match \qquad times.
So, the order of rotation is \qquad .
Angle of rotation symmetry is:

$$
\begin{aligned}
\frac{360^{\circ}}{\text { the order of rotation }} & =\underline{360^{\circ}} \\
& =\underline{\square}
\end{aligned}
$$

The angle of rotation symmetry is \qquad .
b)

The shape and its tracing match \qquad times. So, the order of rotation is \qquad .
Angle of rotation symmetry is:

The angle of rotation symmetry is \qquad .

Shapes that need a complete turn to match again do not have rotational symmetry.

We use isometric dot paper to draw images after rotations that are multiples of 60°.

We can use what we know about isometric dot paper to help us rotate a shape.

Example 3

Rotate parallelogram $\mathrm{ABCD} 60^{\circ}$ clockwise about vertex C.
Draw and label the rotation image.

Solution

Trace the shape.
Label the vertices on the tracing.
Rotate the tracing 60° clockwise about vertex C.
Draw and label the rotation image.
The centre of rotation, C, does not move.
So, it is not labelled C^{\prime}.

Check

1. Draw and label the image after each rotation.
a) 60° counterclockwise about vertex G
b) 120° clockwise about vertex S

Practice

1. Find the order of rotational symmetry for each shape.
a)

The shape and its image match \qquad times.
So, the shape has rotational symmetry of order \qquad .
b)

The shape and its image match \qquad times. So, the shape has rotational symmetry of order \qquad .
2. Find the angle of rotation symmetry for each shape in question 1.
a) The order of rotation is \qquad .

Angle of rotation symmetry is:

$$
\begin{aligned}
& \frac{360^{\circ}}{\text { the order of rotation }}=\underline{360^{\circ}} \\
&= \\
&
\end{aligned}
$$

The angle of rotation symmetry is \qquad -.
b) The order of rotation is \qquad . Angle of rotation symmetry is:

$$
\begin{aligned}
\frac{360^{\circ}}{\text { the order of rotation }} & =\underline{360^{\circ}} \\
& =\square
\end{aligned}
$$

The angle of rotation symmetry is \qquad -.
3. Does this shape have rotational symmetry?

\qquad
\qquad
\qquad
4. The angle of rotation symmetry for a shape is 36°.

What is the shape's order of rotation?

The angle of rotation symmetry is: $\frac{360^{\circ}}{\text { the order of rotation }}$
So, $36^{\circ}=\frac{360^{\circ}}{\text { order of rotation }}$
Think: Which number divides into 360 exactly 36 times?
I know $360 \div$ \qquad $=36$
So, the order of rotation is \qquad .
5. Draw the image after each rotation.
a) 90° counterclockwise about vertex A

b) 180° about vertex J

c) 60° clockwise about vertex N

d) 120° counterclockwise about vertex T

Translations

A translation moves a shape along a straight line.
A shape and its translation image face the same way.
This shape was translated 2 squares right and 3 squares up.

Check

1. Write the translation that moves each shape to its image.
a)

b)

2. Draw each translation image.
a) 1 square left and 3 squares up

b) 3 squares right and 2 squares down

7.7 Identifying Types of Symmetry on the Cartesian Plane

FOCUS Identify and classify line and rotational symmetry.

A diagram of a shape and its transformation image may have:

- line symmetry
- rotational symmetry
- both line symmetry and rotational symmetry
- no symmetry

Example 1 Determining whether Shapes Are Related by Symmetry

Are rectangles $A B C D$ and $E F G H$ related by symmetry?

Solution

Check for line symmetry:
Rectangle $A B C D$ is to the left of rectangle EFGH.
So, try a vertical line of reflection.
When I place a Mira on Line A, the rectangle and its image match.

So, the rectangles are related by line symmetry.

Check for rotational symmetry:
The rectangles do not touch.
So, try a point of rotation off the rectangles.
Try different points to see if the rectangles

ever match. When I rotate rectangle $A B C D 180^{\circ}$
about point R , the rectangles match.
So, the rectangles are related by rotational symmetry.

Check

1. For each diagram, find out if the polygons are related by symmetry.
a)

Do the polygons face opposite ways? \qquad
One polygon is above the other,
so try a \qquad line of reflection.
Use a Mira to find the line of reflection.
Are the polygons related by a reflection? \qquad
If they are, draw the line of reflection.
Do the polygons touch? \qquad
So, try a point of rotation \qquad the polygons.
Try different points of rotation.
Do the polygons ever match? \qquad
Are the polygons related by a rotation? \qquad
If they are, label the point of rotation.
b)

Do the polygons face different ways? \qquad
Do the polygons face opposite ways? \qquad
So, are the polygons related by a reflection? \qquad
Do the polygons touch? \qquad
So, try a point of rotation \qquad the polygons.
Try different points of rotation.
Do the polygons ever match? \qquad
Are the polygons related by a rotation? \qquad

Example 2 Identifying Symmetry in a Shape and Its Transformation Image

Draw the image of this parallelogram after a translation of 2 squares down and 1 square right. Write the coordinates of each vertex and its image. Describe any symmetry that results.

Solution

Translate parallelogram ABCD 2 squares down and 1 square right.
Draw and label the translation image.
Write the coordinates of each vertex and its image.

Point	Image
$A(3,5)$	$A^{\prime}(4,3)$
$B(7,5)$	$B^{\prime}(8,3)$
$C(6,3)$	$C^{\prime}(7,1)$
$D(2,3)$	$D^{\prime}(3,1)$

Use a Mira to check for line symmetry.
There is no line on which I can place a Mira
so one parallelogram matches the other.
So, the shape does not have line symmetry.
Use tracing paper to check for rotational symmetry.
The shape and its tracing match after a rotation
of 180° about $(5,3)$.
So, the shape has rotational symmetry.

Check

1. Draw the image of this polygon after a translation of 2 squares down.
Write the coordinates of each vertex and its image.
Describe any symmetry that results.
Translate the polygon 2 squares down.
Draw and label the translation image.

Point	Image
$\mathrm{U}(3,6)$	$\mathrm{Y}(3,4)$
$\mathrm{V}(5,6)$	$\mathrm{X}(5,4)$
$\mathrm{W}(\ldots, \ldots)$	$\mathrm{W}^{\prime}(\ldots, \ldots)$
$\mathrm{X}(\ldots, \ldots)$	$\mathrm{X}^{\prime}(\ldots, \ldots)$
$\mathrm{Y}(\ldots, \ldots)$	$\mathrm{Y}^{\prime}(\ldots, \ldots)$
$\mathrm{Z}(\ldots, \ldots)$	$\mathrm{Z}^{\prime}(\ldots, \ldots)$

Use a Mira to check for line symmetry.
The shape has \qquad lines of symmetry:
Draw and label any lines of symmetry you found.
Use tracing paper to check for rotational symmetry.
Does the shape have rotational symmetry? \qquad
Draw and label the point of rotation.
2. Draw the image of this polygon after a reflection in the line along side QR .
Write the coordinates of each vertex and its image.
Describe any symmetry that results.

	y								
-									
		P	Q						
-4	U	T							
2									
			R						x
0			2		4		6		

Reflect the polygon.
Draw and label the reflection image.

Point	Image
$\mathrm{P}(\ldots, \ldots)$	$\mathrm{P}^{\prime}(\ldots, \ldots)$
$\mathrm{Q}(\ldots, \ldots)$	$\mathrm{Q}(\ldots, \ldots)$
$\mathrm{R}(\ldots, \ldots)$	$\mathrm{R}(\ldots, \ldots)$
$\mathrm{S}(\ldots, \ldots)$	$\mathrm{S}^{\prime}(\ldots, \ldots)$
$\mathrm{T}(\ldots, \ldots)$	$\mathrm{T}^{\prime}(\ldots, \ldots)$
$\mathrm{U}(\ldots, \ldots)$	$\mathrm{U}^{\prime}(\ldots, \ldots)$

Use a Mira to check for line symmetry.
The shape has \qquad line of symmetry:
Draw and label any lines of symmetry you found.
Use tracing paper to check for rotational symmetry.
Is there a point about which you can turn the tracing
so it matches the shape? \qquad
Does the shape have rotational symmetry? \qquad

Practice

1. Which of these polygons are related by line symmetry?

Which pairs of polygons face opposite ways?

Draw in the line of reflection for each
pair of polygons.
Which polygons are related by line symmetry?
\qquad
2. Which of these polygons are related by rotational symmetry about point R ?

Trace rectangle E.
Rotate the tracing about point R.
Which rectangle does it match? \qquad
Trace rectangle G.
Rotate the tracing about point R .
Which rectangle does it match? \qquad
Which rectangles are related by rotational symmetry?
\qquad
3. For each diagram, find out if the triangles are related by symmetry. Use tracing paper and a Mira to help.
a)

Do the triangles face opposite ways? \qquad
So, are the triangles related by a reflection? \qquad
Do the triangles touch? \qquad
So, try a point of rotation \qquad the triangles.
Which vertex is common to both triangles?
\qquad
Try different rotations about this vertex.
When do the triangles match? \qquad

Are the triangles related by a rotation? \qquad
If they are, label the point of rotation.
b)

Do the triangles face opposite ways? \qquad One triangle is above the other, so try a \qquad line of reflection.
Use a Mira to find the line of reflection.
Are the triangles related by a reflection? \qquad
If they are, draw the line of reflection.
Do the triangles touch? \qquad
So, try a point of rotation \qquad the triangles.
Try different points of rotation.
Do the triangles ever match? \qquad
Are the triangles related by a rotation? \qquad
If they are, label the point of rotation.
4. Draw the image of this polygon after a rotation of 180° about point A.
Write the coordinates of each vertex and its image.
Describe any symmetry that results.
Rotate the polygon.
Draw and label the rotation image.

Point	Image
$\mathrm{P}(\ldots, \ldots)$	$\mathrm{P}^{\prime}(\ldots, \ldots)$
$\mathrm{Q}(\ldots, \ldots)$	$\mathrm{Q}^{\prime}(\ldots, \ldots)$
$\mathrm{R}(\ldots, \ldots)$	$\mathrm{S}(\ldots, \ldots)$
$\mathrm{S}(\ldots, \ldots)$	$\mathrm{R}(\ldots, \ldots)$
$\mathrm{T}(\ldots, \ldots)$	$\mathrm{T}^{\prime}(\ldots, \ldots)$

Use a Mira to check for line symmetry.
\qquad
\qquad
\qquad
Use tracing paper to check for rotational symmetry.
Does the shape have rotational symmetry? \qquad
If it does, label the point of rotation.

Unit 7 Puzzle

Mystery Logo!

A friend designed a logo for Hal's new gift-wrapping business.
Follow these instructions to create the logo on the coordinate grid below.

Instructions:

1. a) Plot and label the points $H(1,7), A(3,5), L(1,3)$.

Join the points in order to form a triangle. Shade the triangle.
b) Rotate $\triangle \mathrm{HAL} 90^{\circ}$ counterclockwise about H . Shade the triangle.
c) Rotate $\triangle H A L 90^{\circ}$ clockwise about L. Shade the triangle.
d) Reflect $\triangle H A L$ in the vertical line through A. Shade the triangle.
2. Reflect the shape from part 1 in Line A.

Shade to match the shape in part 1.
3. Plot the points (5, 6), (7, 6), (7, 4), (5, 4).

Join the points in order to form a square. Shade the square a different colour.

Does the logo have any symmetry?
\qquad
\qquad
\qquad
\qquad

Unit 7 Study Guide

Skill	Description	Example
Find the scale factor of a scale diagram.	Scale factor $=$ \qquad length on original diagram An enlargement has a scale factor >1. A reduction has scale a factor <1.	Scale factor: $\frac{\text { length on scale diagram }}{\text { length on original diagram }}=\frac{4}{2}=2$
Find out if two polygons are similar.	In two similar polygons: - matching angles are equal and - all pairs of matching sides have the same scale factor.	
Find out if two triangles are similar	In two similar triangles: - matching angles are equal or - all pairs of matching sides have the same scale factor.	
Identify lines of symmetry.	A line of symmetry divides a shape into 2 congruent parts. When one part is reflected in the line of symmetry, it matches the other part exactly.	
Find out if a shape has rotational symmetry.	A shape has rotational symmetry when it can be turned less than 360° about its centre to match itself exactly.	
Find the order of rotation and the angle of rotation symmetry for a polygon.	The number of times a shape matches itself in one complete turn is the order of rotation. The angle of rotation symmetry is: \qquad the order of rotation	A square has order of rotation 4. So, its angle of rotation symmetry is: $\frac{360^{\circ}}{4}=90^{\circ}$

Unit 7 Review

7.1 1. A photo of a baby giraffe is to be enlarged for a newspaper.

The actual photo measures 4 cm by 6 cm .
Find the dimensions of the enlargement with a scale factor of $\frac{7}{2}$.
Write the scale factor as a decimal: $\frac{7}{2}=$ \qquad
Length of original photo: \qquad
Length of enlargement: \qquad \times \qquad $=$ \qquad
Width of original photo: \qquad
Width of enlargement: \qquad \times \qquad $=$ \qquad
The enlargement has dimensions \qquad .
7.2 2. Find the scale factor for this reduction.

Length of original line segment: \qquad cm
Length of reduction: \qquad cm
Scale factor $=\frac{\text { length on reduction }}{\text { length on original }}$

$$
\begin{aligned}
& =\overline{\underline{Z}} \\
& =
\end{aligned}
$$

The scale factor is \qquad .
7.3 3. Are these parallelograms similar?

Check matching angles.

$\angle A=$ \qquad $=$ \qquad
\qquad
All matching angles \qquad equal.

Check matching sides.
The matching sides are: \qquad and \qquad and \qquad and \qquad Find the scale factors.
$\frac{\text { length of }}{\text { length of }}$ \qquad

$$
=
$$

\qquad
$\frac{\text { length of }}{\text { length of }}=$ \qquad

$$
=
$$

The scale factors \qquad equal. So, the parallelograms \qquad similar.
7.4 4. Are these two triangles similar?

In $\triangle A B C$, order the sides from shortest to longest:

In $\triangle \mathrm{EFG}$, order the sides from shortest to longest:

\qquad
Find the scale factors of matching sides.
$\frac{\text { length of }}{\text { length of }}=\underline{\square}=$
$\frac{\text { length of }}{\text { length of }}=$
\qquad
$\frac{\text { length of }}{\text { length of }}=\underline{=}=$ \qquad

All scale factors are \qquad . So, the triangles \qquad .
5. Triangle EFG is similar to $\triangle \mathrm{JKL}$.

Find the length of JK .

\qquad is a reduction of \qquad .
Choose a pair of matching sides whose lengths are both known:

Scale factor $=\frac{\text { length on reduction }}{\text { length on original }}$

$$
\begin{aligned}
& =\bar{\square} \\
& =
\end{aligned}
$$

The scale factor is \qquad .

Use the scale factor to find the length of JK.
JK and EF are matching sides.
Length of EF : \qquad
Scale factor: \qquad
Length of JK: \qquad
So, JK has length \qquad .
7.5 6. Draw the lines of symmetry in each tessellation.
a)

b)

7. Reflect the shape in the line of reflection to make a larger shape.

Point	Image
$\mathrm{P}(\ldots, \ldots)$	-
$\mathrm{Q}(\ldots, \ldots)$	-
$\mathrm{R}(\ldots, \ldots)$	-
$\mathrm{S}(\ldots, \ldots)$	-
$\mathrm{T}(\ldots, \ldots)$	-
$\mathrm{U}(\ldots, \ldots)$	

7.6 8. Find the order of rotational symmetry and the angle of rotation symmetry for this shape.

The shape and its image match \qquad times.
So, the shape has rotational symmetry of order \qquad _.
Angle of rotation symmetry is:

$$
\begin{aligned}
\frac{360^{\circ}}{\text { the order of rotation }} & =\underline{360^{\circ}} \\
& =\underline{ }
\end{aligned}
$$

9. Draw the image after each rotation.
a) 120° clockwise about vertex B
b) 180° about vertex L

7.7 10. Find out if the polygons are related by symmetry. Use tracing paper and a Mira to help.

Do the polygons face opposite ways? \qquad
So, are the polygons related by a reflection? \qquad
Draw and label the line of reflection.
Do the polygons touch? \qquad
So, try a point of rotation \qquad the polygons.
Are the polygons related by a rotation? \qquad
If they are, label the point of rotation.
11. a) Reflect the polygon in the vertical line through 3 on the x-axis.
Draw and label the image.
b) Describe the symmetry in the shape that results.

The shape has \qquad lines of symmetry:
Draw and label any lines of symmetry you found.
Does the shape have rotational symmetry? \qquad
If it does, label the point of rotation.

